簡易檢索 / 詳目顯示

研究生: 杜定賢
Ting Shien Duh
論文名稱: 304不□鋼材料相互晶向差對晶界偏析的影響研究
The effects of grain boundary misorientation on grain boundary segregation in 304 stainless steels
指導教授: 開執中
Ji Jung Kai
陳福榮
Fu Rong Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 224
中文關鍵詞: 晶界偏析晶界相互晶向差奧斯田不□鋼照射輻射引發晶界偏析
外文關鍵詞: grain boundary segregation, grain boundary misorientation, austenitic stainless steel, irradiation, RIS
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主要目的是探討受質子照射奧斯田不□鋼材料中,晶界兩旁晶粒相互晶向差對晶界偏析的影響模式。過去很多研究顯示在平衡偏析狀況下,晶界的結構是有次序的,而且晶界偏析程度與晶界相互晶向差有關。相對於晶界平衡偏析現象,輻射引發溶質晶界偏析是一種非平衡的晶界偏析現象。在本研究中,我們選定的試片條件共分4種,分別為:工廠退火(AR)、照射(AR + IRR)、熱敏化(SEN)和熱敏化照射(SEN + IRR)。照射條件為質子能量5 MeV,照射溫度450oC,照射量1dpa。利用配有X光能譜分析儀的高分辨場發射電子顯微鏡測量晶界附近溶質濃度分佈,並利用菊池圖形分析晶界兩旁晶粒相互晶向差。實驗結果顯示:(1) As-received 304不□鋼試片在晶界上有明顯鉻濃化( Cr-enrichment )現象產生;(2) 1-dpa照射後試片(AR+IRR.)在不同晶界附近都沒有觀測到明顯的溶質偏析現象,推論此結果是因as-received試片其晶界上有鉻濃化現象,照射時因而延遲了晶界鉻乏效應的進行;(3)熱敏化(SEN)試片在晶界附近有明顯的鉻乏(Cr-depletion)現象;(4)熱敏化試片經1dpa質子照射後,在晶界附近鉻乏現象變得鉻乏量更深鉻乏範圍更窄。溶質在晶界上的偏析程度亦隨晶界而異,在熱敏化照射試片中可看到晶界鉻偏析量在S=3, 9, 15晶界上有相對低點,對於S<21的晶界,在特殊晶界上的鉻偏析量似乎有隨S值增加而增加的趨勢。
    在模型建立上,我們以原有RIS模型為基礎,加入晶界差排模型和晶界擴散的考量,建立含有晶界結構參數的RIS模型,修改後的RIS模型可合理解釋晶界偏析與晶界結構的關係。與實驗結果比較,模型計算結果與實驗結果同樣顯示敏化照射後試片在特殊晶界上的鉻偏析量有隨S值增加而增加的趨勢。


    The purpose of this study is to investigate the effects of the grain boundary misorientation on the radiation induced segregation (RIS) in 304 stainless steels. For the experiments, there were 4 test conditions for the specimens: (1) As-received (AR) with enriched Cr at grain boundary, (2) AR + 1dpa proton irradiation at 450oC, (3) Thermal sensitized (SEN), and (4) SEN + 1dpa proton irradiation at 450oC. The Cr/Ni concentration profiles were measured by using FEGTEM/EDS and the grain boundary misorientation was determined with the aid of simulated Kikuchi patterns. A delayed Cr depletion compared to no pre-enrichment condition was observed at grain boundaries in AR + 1dpa specimens. The Cr concentration profiles were found to be narrower and deeper in SEN + 1dpa specimens. The degree of grain boundary segregation was observed to be higher at random boundaries than special boundaries. The segregation cusps were measured at grain boundaries of S3, S9 and S15 in SEN + 1dpa 304 stainless steel specimens. From the fitted segregation cusps, it seems that the Cr segregation level at special boundaries in irradiated sensitized 304 stainless steels are increasing with S for value up to S = 21.
    For the model, a simple rate equation model with modified boundary conditions, which included the fluxes of defects diffusing along the grain boundaries to the grain boundary dislocations, was developed for RIS at boundaries with different S values. The results of the model calculations were compared to the experimental results and it was found that the model could clearly predict the same trends that the Cr depletion levels at special boundaries in irradiated 304 stainless steels were increasing with S.

    頁次 中文摘要.....................................................i 英文摘要....................................................ii 致謝.......................................................iii 目錄........................................................iv 圖目錄......................................................vi 表目錄......................................................xi 一、 前言....................................................1 二、 文獻回顧 ...............................................4 2.1 界面熱力學 ..............................................4 2.1.1界面熱力學(從Gibbs觀點)...............................4 2.1.2界面熱力學(從Cahn觀點)................................5 2.2 晶界偏析 ................................................7 2.2.1 金屬中晶界偏析的一些主要性質 ..........................8 2.2.2 熱敏化 ...............................................10 2.2.3 輻射照射敏化 .........................................11 2.2.4 濃合金中RIS理論 ......................................19 2.3 晶界結構模型 ...........................................21 2.3.1 晶界自由度 ...........................................22 2.3.2 重合晶格(CSL)模型 ....................................24 2.4 晶界偏析與晶界結構的關聯 ...............................25 2.4.1 晶界能量、晶界遷移和晶界擴散與晶向差的關連........... 25 2.4.2 晶界偏析與晶向差的關連 ...............................27 三、 實驗方法 ..............................................44 3.1 304不□鋼試片之準備及熱處理 ............................44 3.2 加速器質子照射 .........................................45 3.3 場發射式電子顯微鏡(FEG/TEM)及能量散射分析(EDX)..........46 3.4 菊池圖形(Kickuchi pattern)分析 .........................48 3.5 濃度分佈de-convolution / convolution修正................52 四、 實驗結果 .............................................76 4.1晶界附近溶質原子濃度分佈 ...............................76 4.1.1 AR 304不□鋼試片晶界附近溶質濃度分佈情形..............77 4.1.2 AR+1dpa 304不□鋼試片晶界附近溶質濃度分佈情形.........77 4.1.3 SEN304不□鋼試片晶界附近溶質濃度分佈情形..............78 4.1.4 SEN+1dpa 304不□鋼試片晶界附近溶質濃度分佈情形........79 4.2 晶界偏析與晶向差的關係..................................81 4.2.1 AR 304不□鋼試片晶界偏析與晶向差的關係................81 4.2.2 SEN 304不□鋼試片晶界偏析與晶向差的關係...............84 4.2.2.1 SEN試片的晶界偏析與晶向差...........................84 4.2.2.2 SEN+1dpa試片的晶界偏析與晶向差......................86 4.3 實驗結果綜合敘述........................................89 五、 晶界相互晶向差對輻射引發晶界偏析影響之理論模式 .......125 六、理論計算分析與實驗討論.................................144 6.1 AR和AR+1dpa 304不□鋼試片的晶界偏析和晶向差............144 6.1.1 AR 304不□鋼試片晶界鉻濃化機制.......................144 6.1.2 AR 304不□鋼試片實驗結果討論.........................146 6.1.3 AR+1dpa 304不□鋼試片晶界鉻偏析延遲機制..............148 6.1.4 AR+1dpa 304試片晶界鉻偏析理論計算分析與實驗結果討論..149 6.2 SEN和SEN+1dpa 304不□鋼試片晶界偏析和晶向差............154 6.2.1 SEN 304不□鋼試片晶界鉻乏機制........................154 6.2.2 SEN 304不□鋼試片實驗結果討論........................155 6.2.3 SEN+1dpa 304不□鋼試片晶界鉻偏析之理論計算分析與實驗結 果討論.....................................................159 6.2.3.1修改後的RIS模型其特點與限制.........................160 6.2.3.2模型計算分析與SEN+1dpa實驗結果比較討論..............165 七、 結論 .................................................196 7.1 實驗部分...............................................196 7.2 理論模型部分...........................................197 八、未來研究方向及建議.....................................200 參考文獻 ..................................................202 附錄A空缺在晶界上的平均擴散通率推想過程....................208 附錄B RIS程式..............................................212

    [1] S.M. Bruemmer, “Quantitative Modeling of Sensitization Development in Austenitic Stainless Steel”, CORROSION 89, paper #561
    [2] H. Wiedersich, N.Q. Lam, in Phase transformation during irradiation, ( edited by Frank V. Nolfi, Jr), Applied Science Publisher, London and New York (1983).
    [3] E.D. Hondros, M.P. Seah, in Physical metallurgy (eds R.W. Cahn and P. Haasen) p. 855. North-Holland, Amsterdam (1983).
    [4] S. Dumbill, W. Hanks. Sixth International Symposium on Environmental Degradation of materials in Nuclear Power System - Water Reactors. (Eds. R.E. Gold and E.P. Simonen) The Minerals, Metals & Materials Society (1993).
    [5] A. Seki, D.N. Seidman, Y. Oh, and S.M. Foiles, Acta Metall., Mater., 39 (1991) 3167.
    [6] W.T. Read, W. Shockly, Phys. Rev. 78 (1950) 275.
    [7] A.Otsuki, M. Mizuno, in Grain boundary structure and related phenomena, Proc. of JIMIS-4, Suppl. To Trans. Japan Inst. of Mets., 27 (1986) 789.
    [8] K.T. Aust, J.W. Rutter, Trans. AIME, 215 (1959) 119.
    [9] W. Lange, M. Jurisch, quoted in H. Mykura, in Grain Boundary Structure and Kinetics, Metals Park, O.H. American Society for Metals (1980) 209.
    [10] T. Watanabe, J. De Physique, 46, Colloque C4, supple. au no 4 (1985) C4-555.
    [11] C.L. Briant, Acta Metall., 31 (1983) 257.
    [12] J.W. Cahn, in Interfacial segregation (eds W.C. Johnson and J.M. Blakely), (1979) American Society for Metals, Metals Park, Ohio.
    [13] A. P. Sutton and R. W. Balluffi, in Interface in crystalline materials , (1995) Clarendon Press. Oxford.
    [14] H.L. Marcus, L.H. Hackett, Jr., and P.W. Palmberg, Temper Embrittlement of Alloy Steels, STP 499(1972), p. 90.
    [15] D.N. Seidman, J.G. Hu, S.M. Kuo, B.W. Krakauer, Y. Oh, and A. Seki, Colloque de Physique, Colloque Cl, Supple. au no 1, J de Physique, 51 (1990) Cl-47.
    [16] C.L. Briant, Mats. Res. Soc. Bulletin, 15(10), (1990) 26.
    [18] Metals Handbook tenth edition, Corrosion. pp 928-929.
    [19] L.E. Rehn and P.O. Okamoto, in Phase transformations during irradiation, (1983).
    [20] A.D. Marwick, J. Nucl. Mater. 135 (1985) 68.
    [21] E.P. Simonen and S.M. Bruemmer, Corrosion 193, 93615, La, (1993)
    [22] E.P. Simonen, L.A. Charlot and S.M. Bruemmer, J. Nucl. Mater. 225 (1995) p117.
    [23] S.J. Rothman, L.J. Norwicki and G.E. Murch, J. Phys. F10 (1980) p383.
    [24] E.P. Simonen and S.M. Bruemmer, J. Nucl. Mater. 239 (1996) 185.
    [25] S. Watanabe, N. Sakaguchi, K. Kurome, M. Nakamura and H. Takahashi, J. Nucl. Mater. 240 (1997) 251.
    [26] S. Amelinckx, W. Dekeyser, Solid State Phys. 8 (1959) 325.
    [27] P.H. Pumphrey, in Grain Boundary Structure and Properties, (1976) Chap. 5.
    [28] H. Gleiter, B. Chalmers, Prog. Mat. Sci. 16 (1972).
    [29] D.G. Brandon, B.Ralph, S. Ranganathan, and M.S. Wald, Acta Met. 12 (1964) 813.
    [30] D.G. Brandon, Acta Met. 14 (1966) 1479.
    [31] A. P. Sutton and R. W. Balluffi (1995) In Interface in crystalline materials Chap. 4. Clarendon Press. Oxford.
    [32] G.H. Bishop, B. Chalmers, Scripta Met. 2 (1968) 133.
    [33] A. P. Sutton and R. W. Balluffi (1995) In Interface in crystalline materials Chap. 1. Clarendon Press. Oxford.
    [34] C.T. Forwood and L.M. Clarebrough, in Electron Microscopy of Interfaces in Metals and Alloys, Chap. 3, (1991)Adam Hilger.
    [35] R. W. Balluffi (1979). in Interfacial segregation (eds W.C. Johnson and J.M. Blakely) p. 193. American Society for Metals, Metals Park, Ohio.
    [36] 劉國勛,金屬學原理,第10章,冶金工業出版社。
    [37] G. Friedel, (1926). Lecons de Cristallographie, Paris.
    [38] S. Ranganathan, Acta Crystallogr. 21 (1966) 197.
    [39] 賴祖涵,金屬的金体缺陷與力學性質,第10章,冶金工業出版社。
    [40] S.W. Chan, R.W. Balluffi, Acta Metall. 34 (1986) 2191.
    [41] A. Otsuki, M. Mizuno, in Grain boundary structureband related phenomena, 2.25 Proc. of JIMIS-4, (1986). Suppl. to Trans. Japan Inst. of Mets., 27, p789.
    [42] T. Mori, H. Miura, T. Tokita, J. Haji, and M. Kato, Phil. Mag. Letters, 58 (1988) 11.
    [43] G. Dhalenne, M. Dechamps, and A. Revcolevschi, in Character of grain boundaries, Advances in Ceramics (1983)Vol. 6, p139.
    [44] D. Wolf, Acta Metall. Mater., 38 (1990) 791.
    [45] D. Wolf, J. Mater. Res., 5 (1990) 1708.
    [46] C.J. Simpson, W.C. Winegard, and K.T. Aust, in Grain boundary structure and properties, p201.
    [48] K.T. Aust and J.W. Rutter, Trans. AIME, 215, (1959) p820.
    [49] N.L. Peterson, in Grain boundary structure and properties, p209.
    [50] D. Turnbull and R.E. Hoffman, Acta Met. 2,(1954) p419.
    [51] W. Lange, and M. Jurisch, quoted in H. Gleiter and B. Chalmers, Prog. Mater. Sci. 16, (1972).
    [52] I. Herbeuval, M. Biscondi, and C. Goux, Mem. Sci. Rev. Met. 70, (1973) p39.
    [53] J.R. Michael, C.H. Lin, and S.L. Sass, Scripta Metall., 22 (1988) 1121.
    [54] G.B. Olson, and M. Cohen, Acta Metall., 27 (1979)1907.
    [55] R. Bonnet, Phil. Mag. A, 51 (1985) 51.
    [56] M. Dupeux, Phil. Mag. Letts. 55 (1987) 7.
    [57] A. P. Sutton and R. W. Balluffi (1995) In Interface in crystalline materials Chap. 2. Clarendon Press. Oxford.
    [58] T. Ogura, T. Watanabe, S. Karashima, and T. Masumoto, Acta metall. Vol. 35, No 7, (1987) p1807
    [59] M.S. Laws and P.J. Goodhew, Acta metall. mater. vol.39, No. 7 (1991) 1525.
    [60] A.P. Sutton and V. Vitek, Phil. Trans. R. Soc. A309 (1983) 55.
    [61] David B. Williams and C. Barry Carter, Transmission Electron Microscopy (1996) ( Plenum Press. New York and London ).
    [62] F. R. Chen and A. H. King, Journal of Electron Microscopy Technique, 6 (1987) 55.
    [63] H. Mykura, in Grain Boundary Structure and Kinetics ( Metals Park, OH: American Society for Metals )(1980) pp 445-56.
    [65] C.T. Forwood, L.M. Clarebrough, in Electron Microscopy of Interfaces in Metals and Alloys, Adam Hilger, Bristol, Philadelphia and New York (1991)
    [66] Valerie Randle and Brian Ralph, J. of Mater. Sci., 21 (1986), 3823.
    [67] R.D. Carter, D.L. Damcott, M. Atzmon, G.S. Was, S.M. Bruemmer, E.A. Kenik, J. Nucl. Mater. 211 (1994) 70.
    [68] 陳福榮教授,菊池帶模擬程式。
    [69] D.C. Joy, Scanning Microscopy, Vol. 5, No. 2 (1991) 329.
    [70] J.L. Alvarez-Perez, S.J. Marshall, K. Gregson, Remote Sens. Environ. 71 (2000) 261.
    [71] 劉文仁,博士論文 (1994)。
    [72] E.P. Simonen and S.M. Bruemmer, Proceedings of the 8th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, edited by ANS, ( Amelia Island, Florida, 1997) p.751.
    [73] T.R. Allen, G.S. Was and E.A. Kenik, J. Nucl. Mater. 244 (1997) 278.
    [74] B.W. Bennett and H.W. Pickering, Acta metall. Vol. 36, No. 3 (1988) 539.
    [75] E.P. Butler and M.G. Burke, Acta metall. Vol. 34, No. 3 (1986) 557.
    [76] O. Okada, K. Nakata and S. Kasahara, J. Nucl. Mater. 265 (1999) 232.
    [78] S. Watanabe, Y. Takamatsu, N. Sakaguchi and H. Takahashi, J. Nucl. Mater. 283 – 287 (2000) 152.
    [79] V. Vitek, Scripta Metall. 21 (1987) 711.
    [80] R.W. Balluffi and A.H. King, in Phase transformation during irradiation, ( edited by Frank V. Nolfi, Jr), p.147. Applied Science Publisher, London and New York (1983).
    [82] R.W. Balluffi, in Diffusion in crystalline solids, ( edited by Graeme E. Murch and Arthur S. Nowick), p.319. Academic Press, Orlando and New York (1984).
    [83] A.N. Aleshin, B.S. Bokshtein, and L.S. Shvindlerman, Sov. Phys. Solid State, 19(12), p.2051 (1977).
    [84] V.T. Borisov, V.M. Golikov, and G.V. Scherbedinskiy, Fiz. Met. Metalloved, 17, No. 6, 881-885, p.80 (1964).
    [85] D. Schwartz, P.D. Bristowe and V. Vitek, Acta metall. Vol. 36, No. 3, p.675 (1988).
    [86] Gui-Jin Wang and V. Vitek, Acta metall. Vol. 34, No. 5, p.951 (1986).
    [88] A. Otsuki, and M. Mizuno, in Grain boundary structureband related phenomena, Proc. of JIMIS-4, Suppl. to Trans. Japan Inst. of Mets., 27, p789 (1986).
    [89] D. Wolf, Acta metall. Mater. Vol. 38, No. 5, p.781 (1990).
    [90] A. N. Aleshin, V. Yu. Aristov, B.S. Bokshtein, and L.S. Shvindlerman, Kinetic properties <111> tilt boundaries in Aluminum ( Preprint ) [ in Russian ], Institute of solid state physics, Academy of sciences of the USSR, Chernogolovka (1976).
    [91] L.E. Murr, R.J. Horylev, and W.N. Lin, Philos. Mag., 22, p. 515 (1970).
    [92] Lawrence E. Murr, in Interfacial phenomena in metals and alloys, p. 87. Addison-Wesley Publishing Company (1975).
    [93] R.W. Balluffi, in Planar defect in crystals, (1987)
    [94] T.R. Allen and G.S. Was, Acta mater. Vol. 46, No. 10, p. 3679 (1998)
    [96] H. Kinoshita, S. Watanabe, S. Mochizuki, N. Sakaguchi, and H. Takahashi, J. of Nucl. Mater. 239, p.205 (1996).
    [97] J.M. Perks, A.D. Marwick, and C.A. English, Proc. Conf. On Radiation Induced Sensitization of Stainless Steels, ed. D.I.R. Norris (CEGB, Berkeley Nuclear Labs, Berkeley), p.15 (1987).
    [98] N.Q. Lam, A. Kumar and H. Wiedersich, in: H.R. Brager and J.S. Perrin (Eds), Effects of Radiation on Materials: Eleventh Conf., ASTM STP 782, American Society for Testing and Materials, 1982, p.985.
    [99] A.C. Hindmarch, Scientific Computing, eds. R.S. Steplemann et al. (North-Holland, Amsterdam), p. 55 (1983).
    [100] S. Watanabe, N. Sakaguchi, N. Hashimoto, H. Takahashi, J. Nucl. Mater. 224 (1995) 158.
    [101] R.G. Faulkner, Shenhua Song, P.E.J Flewitt, M. Victoria and P. Marmy, J. Nucl. Mater. 255 (1998) 189.
    [103] M. Doyama, J. Nucl. Mater. 69-70 (1978) 350.
    [104] R.G. Faulkner, Shenhua Song, P.E.J Flewitt, Mater. Sci. and Tech., 12 (1996) 904.
    [105] C. Dimitrov and O. Dimitrov, J. Nucl. Mater. 152 (1988) 21.
    [106] J. Dryzek, C. Wesseling, E. Dryzek and B. Cleff, Mater. Let. 21 (1994) 209.
    [107] M. Kiruchi, T. Arai, Y. Yamamoto, H. Takashima, and R. Tanaka, in Point defects and defect interactions in metals, Eds. J.I. Takamura, M. Doyama and M. Kiritani, North-Holland Publishing Company (1982) 733.
    [108] J. Walmsley, P. Spellward, S. Fisher and J. Jenssen, Seventh international symposium on environmental degradation of materials in nuclear power systems – water reactors, NACE International (1995) 985.
    [114] B.W. Bennett and H.W. Pickering, Metall. Trans. 18A (1987) 1117.
    [115] S.M. Bruemmer, E.P. Simonen, P.M. Scott, P.L. Andresen, G.S. Was, J.L. Nelson, J. Nucl. Mater. 274 (1999) 299.
    [116] C.C. Goodwin, R.G. Faulkner, S.B. Fisher, Proc. ASTM 18th Symp. on Effects of Radiation on Materials, ASTM STP 1325 (1997).
    [117] S. Dumbill, R.M. Boothby, T.M. Williams, Mat. Sci. Tech. 7 (1991) 385.
    [118] D.L. Damcott, T.R. Allen, G.S. Was, J. Nucl. Mater. 225 (1995) 97.
    [119] C.C. Goodwin, R.G. Faulkner, J. C. Walmsley, S.B. Fisher, Proc. ASTM 19th Symp. on Effects of Radiation on Materials, ASTM STP 1366 (1998).
    [120] Otsuki, A. and Mizuno, M. in Grain boundary structureband related phenomena, 2.25 Proc. of JIMIS-4, (1986). Suppl. to Trans. Japan Inst. of Mets., 27, p789.
    [121] T.M. Devine et al., J. Mater. Sci. 32 (1997) 1555.
    [122] I. Kaur, W. Gust, L. Kozma, in Handbook of Grain and Interface Boundary Diffusion Data, Ziegler Press, Stuttgart (1989).
    [123] 王立華, 博士論文計畫報告 (1997).
    [124] E.A. Kenik, et al, 15th Sym. On Effects of Radiation on Materials, June 1990.
    [125] D.I.R. Norris, et al, 15th Sym. On Effects of Radiation on Materials, June 1990.
    [126] A.J. Jacobs, ASTM-STP 1175, p.902-918, 1994.
    [127] S. M. Bruemmer, et al, 6th Environmental Degradation, 1993, p277.
    [128] K. Asano, Sym. Of 5th Environmental, p.838.
    [129] A. Jenssen, et al ,“The Importance of Mo on IASCC in SS” corrosion 96, paper #101.
    [130] R.D. Carter, et al, J. Nucl. Mater. Vol. 205, p. 361, 1993.
    [131] J.M. Cookson, et al, J. Nucl. Mater. Vol. 202, p. 104, 1993.
    [132] D.L. Damcott, et al, J. Nucl. Mater. Vol. 225, p. 97, 1995.
    [133] S.M. Bruemmer, et al, Sym of 5th Environmental, p.821, 1991.
    [134] P.R. Okamoto, et al, J. Nucl. Mater. Vol. 53, p. 336, 1974.
    [135] H. Takahashi, et al, J. Nucl. Mater. Vol. 103-104, p. 1415, 1981.
    [136] H. Takahashi, et al, ASTM-STP 1047(1990)p.93.
    [137] T. Ezawa, et al, Ultramicroscopy, 19(1991)p.187.
    [138] K. Fukuya, et al, Scripta Metall., 19(1985)p.959.
    [139] K. Nakata, et al, J. Nucl. Mater. Vol. 133-134, p. 575, 1985.
    [140] K. Nakata, et al, J. Nucl. Mater. Vol. 150, p. 186, 1987.
    [141] T. Onchi, K. Hide, H.M. Chung, J. Nucl. Mater. 274 (1999) 341.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE