簡易檢索 / 詳目顯示

研究生: 朱行正
Hsin-Cheng Chu
論文名稱: 水溶液加熱還原法合成二維金奈米晶體
A Thermal Aqueous Solution Approach for the Synthesis of 2-D Au Nanocrystals
指導教授: 黃暄益
Michael H. Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 63
中文關鍵詞: 金奈米 二維奈米結構 片狀
外文關鍵詞: gold nanoplate gold nanoprisms
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米材料是近幾年來最熱門的研究題目,在奈米尺度的材料會有不同於塊材或分子的物理化學性質,不同大小、形狀的奈米材料都會影響其物理化學性質,因此吸引了全世界物理、化學、材料、生化領域的科學家投入,隨著人類對微小化材料的需求合成出大小、形狀一致的奈米材料為首要課題,在二十一世紀更小、更便宜、更快速的資料儲存、能源、生醫元件將伴隨奈米科技而誕生。
    金奈米粒子會因為大小及形狀的不同而改變表面電漿共振頻率,在紫外可見光譜上有明顯變化,自奈米金被合成出來科學家便利用硫金共價健的關係把官能基或生物分子修飾上金奈米粒子,利用這些修飾過後的金奈米粒子來排列及辨識化學物質和生物分子。
    本篇論文收錄的實驗系統中,我們用氯金酸(HAuCl4);檸檬酸鈉(trisodium citrate) 溴化十六烷三甲基銨 (cetyltrimethylammonium bromid);在水溶液下加熱還原合成二維金奈米晶體,改變溫度、時間、檸檬酸鈉的量可以控制不同大小的二維金奈米晶體在紫外可見光譜上可看到不同的吸收,從電子顯微鏡的分析可得知大小分佈及形狀,微米尺度的二維晶體以六角型居多奈米尺度的二維晶體以三角型為主,在結構方面經由粉末X-Ray繞射、穿透式電子顯微鏡的鑑定,這些不同大小二維金奈米晶體的表面皆是由{111}晶面構成,相較一些有關合成金奈米二維結構的文獻在水溶液系統具有方便修飾分子的優勢,我們期待這些在水溶液系統下出合出的二維金奈米晶體修飾不同的官能基之後能觀察到特別的現象。


    The synthesis of gold nanoplates was carried out in an aqueous solution by thermal reduction of HAuCl4 with trisodium citrate in the presence of cetyltrimethylammonium bromide (CTAB) surfactant in just 5–40 minutes. The sizes of the gold nanoplates can be varied from as small as tens of nanometers in width, to several hundreds of nanometers, and even a few microns in width by changing the reagent concentrations, solution temperature and the reaction time. A [CTAB]/[HAuCl4] ratio of 6 in the reaction solution was found to be favorable for the formation of gold nanoplates. The nanoplates possess well-defined shapes with sharp edges. The small-sized nanoplates exhibit mainly triangular shape, while larger nanoplates show a mixture of triangular, hexagonal, truncated triangular, and other symmetrical structures. The nanoplates are composed of essentially (111) lattice planes, as revealed by both XRD and TEM results. Nanoplates with widths from several hundreds of nanometers to a few microns absorb light strongly in the near-infrared region. The growth mechanism of these nanoplates was investigated. The ability to synthesize gold nanoplates with these different size ranges in large scale in aqueous solution using simple CTAB capping surfactant should allow more diverse applications of gold nanoplates.

    TABLE OF CONTENTS Title Page i Table of Contents ii List of Figures v List of Tables ix Abstract of The Thesis x CHAPTER 1 A SURVEY ON GOLD NANOPARTICLES 1.1 Introduction 1 1.2 Applications of Size- and Shape-Controlled Gold Nanoparticles 5 1.2.1 Zero-Dimensional Au Nanoparticles as Colorimetric Sensors 5 1.2.2 One-Dimensional Au Nanorod Linkage as Cysteine and Glutathione Selective Detectors 8 1.3 Synthesis of Metal Nanoparticles with Size and Shape Control 11 1.3.1 Seed-Mediated Growth Method 11 1.3.2 Polyol Process Using PVP 14 1.3.3 Photochemical Process for the Synthesis of Anisotropic Nanostructures 19 1.4 Investigation of 2-D Nanoparticles 21 1.5 References 24 CHAPTER 2 A THERMAL AQUEOUS SOLUTION APPROACH FOR THE SYNTHESIS OF TRIANGULAR AND HEXAGONAL GOLD NANOPLATES WITH THREE DIFFERENT SIZE RANGES 2.1 Introduction 26 2.2 Experimental Section 28 2.3 Results and Discussion 32 2.4 Conclusion 47 2.5 References 49 CHAPTER 3 AN IMPROVED HIGH-YIELD SYNTHESIS OF GOLD NANOPRISMS 3.1 Introduction 52 3.2 Experimental Section 53 3.3 Results and Discussion 54 3.4 Conclusion 62 3.5 References 63 LIST OF FIGURES CHAPTER 1 A SURVEY ON GOLD NANOPARTICLES Figure 1.1 Size effects on the surface plasmon absorption of spherical gold nanoparticles between 9 and 99 nm. 3 Figure 1.2 TEM image of gold nanorods with an average aspect ratio of 4.1, and the corresponding UV–vis absorption spectrum of the colloidal gold nanorod solution. 4 Figure 1.3 Schematic Representation of the K+-Induced Aggregation via Sandwich Complexation of Crown-Thiol Molecule 1 in a Sodium-Containing Solution. 7 Figure 1.4 Absorption spectral changes of Au nanorods in acetonitrile/water on addition of cysteine or glutathione. 3D plot showing the selectivity of cysteine (3 □M), glutathione (12 □M), and other R-amino acids (10 □M). 10 Figure 1.5 Schematics showing seed-mediated growth for synthesis of gold and silver nanorods. 13 Figure 1.6 Low- and high-magnification SEM images of slightly truncated silver nanocubes synthesized with the polyol process. 16 Figure 1.7 SEM images of silver nanocubes after they had reacted with 0.3 mL and 1.5 mL of aqueous HAuCl4 solution (1 mM). 18 Figure 1.8 Time-dependent UV–vis spectra and Scheme 1 showing photoinduced conversion of silver nanospheres to nanoprisms (excitation at 670nm). 20 Figure 1.9 Low magnification (a) and high magnification (b) SEM images of the precipitate. The inset shows that the thickness of a single nanoplate is about 47.7 nm. 22 CHAPTER 2 A THERMAL AQUEOUS SOLUTION APPROACH FOR THE SYNTHESIS OF TRIANGULAR AND HEXAGONAL GOLD NANOPLATES WITH THREE DIFFERENT SIZE RANGES Figure 2.1 Structures of sodium citrate and cetyltrimethylammonium bromide. 31 Figure 2.2 SEM image of the micron-sized gold plates. Inset shows a SEM image of the side view of two overlapping plates. Optical image of the micron-sized plates showing their golden color. 34 Figure 2.3 Size distribution histograms of the gold nanoplates. 36 Figure 2.4 Powder XRD pattern of the micron-sized gold nanoplates. Inset shows the enlarged powder XRD pattern in the (200) peak region. 37 Figure 2.5 TEM image of medium-sized gold nanoplates. TEM images of gold nanoplates arranged into chain-like structures. 40 Figure 2.6 TEM images of small-sized gold nanoplates. Plate thickness can be estimated from the inset of with slightly larger nanoplates. 41 Figure 2.7 UV–vis absorption spectra for the three different-sized gold nanoplates. 42 CHAPTER 3 AN IMPROVED HIGH-YIELD SYNTHESIS OF GOLD NANOPRISMS Figure 3.1 Absorption spectra of gold nannoprisms formed after reaction at 100 °C for 0, 20, and 40 min. 56 Figure 3.2 UV–vis absorption spectrum of the HCl-treated Au nanotriangle solution after 20 minutes of reaction at 100 °C and TEM images of the resulting nanoprisms. 59 Figure 3.3 UV–vis absorption spectrum of the HCl-treated Au nanotriangle solution after 40 minutes of reaction at 100 °C and the TEM images of the nanoprisms. 61 LIST OF TABLES CHAPTER 1 A SURVEY ON GOLD NANOPARTICLES Table 1 Different approaches for the synthesis of gold nanoplates 23

    (1) Faraday, M. Philos. Trans. 1857, 147, 145.

    (2) Mie, G. Ann. Phys. 1908, 25, 377.

    (3) Kreibig, U.; Vollmer, M., Optical Properties of Metal Clusters. ed.; Springer: Berlin, 1995.

    (4) Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Science 2001, 294, 1901.

    (5) Kuo, C.-H.; Huang, M. H. Langmuir 2005, 21, 2012.

    (6) Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 8410.

    (7) Mirkin, C. A. Inorg. Chem. 2000, 39, 2258.

    (8) Lin, S.-Y.; Liu, S.-W.; Lin, C.-M.; Chen, C.-H. Anal. Chem. 2002, 74, 330.

    (9) Zhu, M.-Q.; Wang, L.-Q.; Exarhos, G. J.; Li, A. D. Q. J. Am. Chem. Soc. 2004, 126, 2656.

    (10) Caswell, K. K.; Wilson, J. N.; Bunz, U. H. F.; Murphy, C. J. J. Am. Chem. Soc. 2003, 125, 13914.

    (11) Johnson, C. J.; Dujardin, E.; Davis, S. A.; Murphy, C. J.; Mann, S. J. Mater. Chem. 2002, 12, 1765.

    (12) Thomsa, K. G.; Barazzouk, S.; Ipe, B. I.; Joseph, S. T. S.; Kamat, P. V. J. Phys. Chem. B 2004, 108, 13066.

    (13) Sudeep, P. K.; Joseph, S. T. S.; Thomas, K. G. J. Am. Chem. Soc. 2005, 127, 6516.

    (14) Busbee, B. D.; Obare, S. O.; Murphy, C. J. Adv. Mater. 2003, 15, 414.

    (15) Gao, J.; Bender, C. M.; Murphy, C. J. Langmuir 2003, 19, 9065.

    (16) Murphy, C. J.; Jana, N. R. Adv. Mater. 2002, 14, 80.

    (17) Wang, Z. L. J. Phys. Chem. B 2000, 104, 1153.

    (18) Sun, Y.; Mayers, B.; Herricks, T.; Xia, Y. Nano Lett. 2003, 3, 955.

    (19) Sun, Y.; Mayers, B.; Xia, Y. Nano Lett. 2003, 3, 675.

    (20) Sun, Y.; Xia, Y. Science 2002, 298, 2176.

    (21) Chen, S.; Fan, Z.; Carroll, D. L. J. Phys. Chem. B 2002, 106, 10777.

    (22) Jin, R.; Cao, Y. C.; Hao, E.; Metraux, G. S.; Schatz, G. C.; Mirkin, C. A. Nature 2003, 425, 487.

    (23) Shankar, S. S.; Ral, A.; Ankamwar, B.; Singh, A.; Ahmad, A.; Sastry, M. Nature Mater. 2004, 3, 482.

    (24) Sun, X.; Dong, S.; Wang, E. Angew. Chem. Engl. Ed. 2004, 43, 6360.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE