簡易檢索 / 詳目顯示

研究生: 葉宗鑫
Yeh,Tsung-Hsin
論文名稱: 具低錯誤地板之低密度同位元檢查碼之建構
Construction of LDPC Codes with Low Error Floors
指導教授: 呂忠津
Lu,Chung-Chin
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 97
語文別: 英文
論文頁數: 54
中文關鍵詞: 低密度同位元檢查碼停止集LU碼二元抹失通道錯誤地板
外文關鍵詞: LDPC code, stopping set, LU code, binary erasure channel (BEC), error floor
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在低密度同位元檢查碼(LDPC codes)的研究領域中,如何建構出具低錯誤地板(error floor)之低密度同位元檢查碼近年來受到熱烈地研究和探討。常見的研究走向是先想辦法找出導致低密度同位元檢查碼在錯誤地板時解碼出錯的結構(error-prone patterns),再想辦法消除它們。小的停止集(stopping sets)是低密度同位元檢查碼在二元抹失通道(binary erasure channel)中導致在錯誤地板解碼出錯的主要結構。我們稱一個低密度同位元檢查碼之最小停止集大小為停止距離(stopping distance),而一個停止距離較大的低密度同位元檢查碼往往具有較低的錯誤地板。且一個具有較大的最小環長(girth)的低密度同位元檢查碼往往具有較大的停止距離。
    LU碼是一種以代數方法建構的低密度同位元檢查碼。建構LU碼可以建構出具備任意大之最小環長的低密度同位元檢查碼。但由於LU碼普遍只具備非常低的碼率(code rate)而難以實際應用,經由一種遮罩法(masking method),可以以LU碼為基礎建構一個具有高碼率且擁有原來LU碼之最小環長(girth)的低密度同位元檢查碼,我們稱之為LUmk碼。
    此論文首先提出一個LUmk碼停止距離的下界限,根據此下界限,我們可知在建構LUmk碼時,提高某特定幾個參數,可以提高LUmk碼的停止距離下界限,不過在此同時也提高了LUmk碼之碼長(codeword length)。然後,藉由一個可以對低密度同位元檢查碼之停止集做分類的參數,還有許多模擬實驗的嘗試,我們最後提出一套可以從所有LUmk碼中挑出效能較好且具較低錯誤地板之LUmk碼的方法步驟。


    In this thesis, we proposed an effective method to construct practical LDPC codes with low error floors. We first consider a class of LDPC codes, called LUmk codes each of which is obtained by removing edges and nodes of the Tanner graph of an LU code and may have arbitrary large girth and high code rate. We derived a lower bound for the stopping distance of an LUmk code and developed a simple method to choose some edges and nodes which should be removed and get a small code ensemble with relatively low error floors from the original LUmk code ensemble.

    第一章 簡介 第二章 低密度同位元檢查碼之解碼以及停止集 第三章 LU碼 第四章 具較高碼率之改良式LU碼 第五章 模擬實驗 第六章 結論 附 錄 英文論文本 1 Introduction 2 Decoding of LDPC Codes and Stopping Sets 2.1 Definitions and Notations of LDPC Codes 2.2 Channel Models 2.3 Decoding Algorithms of LDPC Codes 2.3.1 Notations 2.3.2 Decoding on the BEC 2.3.3 Decoding on the BSC 2.3.4 Decoding on the BIAWGN Channel 2.4 Stopping Sets 3 LU Codes 3.1 Definitions and Notations 3.2 Another Interpretation of LU Codes 3.3 Lower Bounds of Stopping Distance of LU Codes 4 Modified LU Codes with Higher Code Rate 4.1 Masking Method 4.2 Lower Bounds of Stopping Distance of LU_mk(m,q) Codes 4.3 The Cyclically Lifted LDPC Code Ensemble 5 Simulations 31 5.1 Base Codes with Variable Nodes of Different Fixed Degree 5.1.1 LUmk(m,q) Codes for q a Prime 5.1.2 LUmk(m,q) Codes for q Not a Prime but a Prime Power 5.2 Base Codes with Different Stopping Distance 5.3 A Method to Construct a Code Ensemble with Lower Error Floors from a Given LUmk Code Ensemble 6 Conclusion

    [1] R. G. Gallager, Low-density Parity-check Codes. Cambridge, MA: MIT Press, 1963.
    [2] D. J. C. MacKay and R. M. Neal, "Near Shannon limit performance of low density parity check codes," Electron. Lett., vol. 32, pp. 1645-1646, Jan. 1996.
    [3] R. M. Tanner, "A recursive approach to low complexity codes," IEEE Trans. Inform. Theory, vol. 27, pp. 533-547, May 1981.
    [4] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R. Urbanke, "Finite-length analysis of low-density parity-check codes on the binary erasure channel," IEEE Trans. Inform. Theory, vol. 48, pp. 1570-1579, June 2002.
    [5] T. Richardson, "Error Floors of LDPC codes," in Proc. 41st Annual Allerton Conf. on Comm., Contr., and Computing. Monticello, IL, Oct. 2003.
    [6] D. J. C. MacKay and M. S. Postol, "Weaknesses of Margulis and Ramanujan-Margulis low-density parity-check codes," in Proc. Second Irish Conf. Mathematical Foundations of Computer Science and Information Technology (Electronic Notes in Theoretical Computer Science), Galway, Ireland, vol. 74, July 2002.
    [7] K. M. Krishnan and P. Shankar, "On the complexity of Finding stopping distance in Tanner graphs," preprint.
    [8] T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel, "Construction of irregular LDPC codes with low error Floors," 2003 IEEE International Conference on
    Communications, pp. 3125-3129, May 2003.
    [9] F. Lazebnik and V. Ustimenko, "Explicit construction of graphs with arbitrary large girth and of large size," Discrete Applied Mathematics, vol. 60, pp. 275-284, 1995.
    [10] C.-C. Lu, "Low-density parity-check codes," Department of Electrical Engineering, National Tsing Hua University, Tech. Rep., 2000.
    [11] A. Shokrollahi, "LDPC codes: An introduction," Digital Fountain, Inc., Tech. Rep., April 2003.
    [12] V. Guruswami, "Iterative decoding of low-density parity check codes-an introductory survey," Department of Computer Science and Engineering, University of Washington, Seattle, Tech. Rep., Sep. 2006.
    [13] T. Richardson and R. Urbanke, "The capacity of low-density parity-check codes under message-passing decoding," IEEE Trans. Inform. Theory, vol. 47, pp. 599-618, Feb. 2001.
    [14] C.-C. Wang, "Code annealing and the suppressing effect of the cyclically lifted LDPC code ensemble," 2006 IEEE Information Theory Workshop. Chengdu,
    China, Oct. 2006.
    [15] W.-Y. Chen and C.-C. Lu, "On codes constructed by generalized Kronecker product," 2007 IEEE International Symposium on Information Theory. Nice, France,
    pp. 1236-1240, June 2007.
    [16] J.-L. Kim, U. N. Peled, I. Perepelitsa, and V. Pless, "Explicit construction of families of LDPC codes with no 4-cycles," IEEE Trans. Inform. Theory, vol. 50, pp. 2378-2388, Oct. 2004.
    [17] W.-Y. Chen and C.-C. Lu, "On LDPC codes constructed by generalized Kronecker product," prepared for publication.
    [18] C.-C. Wang, S. R. Kulkarni, and H. V. Poor, "Upper bounding the performance of arbitrary ‾nite LDPC codes on binary erasure channels," 2006 IEEE International Symposium on Information Theory. Seattle, Washington, U.S.A., July 2006.
    [19] C.-C. Wang, S. R. Kulkarni, and H. V. Poor, "Exhausting error-prone patterns in LDPC codes," submitted to IEEE Trans. Inform. Theory.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE