簡易檢索 / 詳目顯示

研究生: 黃偉丞
Huang, Wei-Cheng
論文名稱: WO3奈米粉末感測層氣體感測器之開發
The Development of Gas Sensor Based on WO3 Nano Particle Sensing Film
指導教授: 傅建中
Fu, Chien-Chung
口試委員: 陳致真
Chen, Chih-Chen
薛丁仁
Hsueh, Ting-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 57
中文關鍵詞: 三氧化鎢氣體感測器奈米粉末
外文關鍵詞: Tungsten trioxide, Gas sensor, Nanoparticle
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 日常生活中,大部份的氣體為無色無味,人類的嗅覺沒辦法準確分辨氣體的種類。當空氣中存在著一些對人體有害的氣體時,假若能以氣體感測器偵測,做適當的處理,則可確保人身安全。金屬氧化物半導體對氣體具備的良好檢測特性,隨著微機電製造技術的成熟,感測晶片能夠微小化,易於整合於攜帶式裝置上,並且能夠大量生產,具備結構簡單、低成本的特點。
    本研究將開發一種電阻式半導體氣體感測器,使用三氧化鎢(Tungsten oxide, WO3)作為感測材料,將WO3材料研磨至奈米等級的顆粒尺寸,以點膠的方式附著於感測晶片上,製作出具有高表面積的多孔感測層。並將微加熱器製作於晶片中,量測時能夠由晶片上的加熱器加熱至所需的量測溫度,不須額外提供熱源。最終製作出的感測晶片能夠對低濃度(50-665ppb)的H2S有著優異的響應,並且在H2的重複量測實驗中驗證了感測器的穩定度。
    在本篇論文最後,提出複合感測晶片的概念,將八個感測單元製作在一個晶片上,透過操作條件與感測材料的變化組合,量測時便能形成複合式的訊號,希望藉此方法能夠解決電阻式半導體氣體感測器選擇性較低的缺點,使其能有更多的應用。


    In daily life, most of the gas is colorless and odorless, and human sense of smell cannot accurately distinguish the type of gas. When there are some gases harmful to the human body in the air, if it can be detected by the gas sensor and properly treated, that is able to ensure personal safety. Metal oxide semiconductors have good detection capabilities for gases. With the maturity of MEMS manufacturing technology, sensing chips can be miniaturized, easy to integrate on portable devices, and be mass-produced. It has the advantages of simple structure and low cost.
    This study will develop a semiconductor gas sensor using tungsten oxide (WO3) as the sensing material. Mounted on the sensor chip in a dispensing approach to produce a porous sensing layer having a high surface area. The micro-heater is fabricated in the wafer and can be heated by the heater on the wafer to the desired measurement temperature without additional heat source. The resulting sensor was able to respond well to low concentrations (50-665 ppb) of H2S, and the stability of the sensor was verified in the repeated measurement experiment of H2.
    At the end of this paper, the concept of a composite sensing wafer is proposed. The eight sensing units are fabricated on one chip, through the different combinations of operating con-ditions and sensing materials, a composite signal can be formed during the measurement. Hoping this approach can solve the disadvantage of the lower selectivity of the resistive sem-iconductor gas sensor, so that it can have more applications.

    目錄 摘要 i 目錄 iii 圖目錄 v 表目錄 viii 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 5 1.2.1 半導體氣體感測器原理 6 1.2.2 WO3的合成 9 1.3 研究動機 12 1.4 論文架構 13 第二章 研究方法 14 2.1 感測原理 14 2.2 氣體感測晶片設計 15 2.3 WO3奈米粒子感測材料 17 2.4 WO3晶相 17 2.5 量測方法 17 2.5.1 氣體流量控制 18 2.5.2 WO3感測膜加熱 18 2.5.3 電極感測訊號 18 第三章 實驗架構 19 3.1 實驗流程 19 3.2 WO3粉漿製備 20 3.2.1 球磨機粉末研磨 21 3.2.2 奈米粉末分散機研磨 21 3.2.3 超音波震盪研磨 21 3.3 WO3氣體感測晶片製作 24 3.3.1 矽基板清潔與氧化層成長 25 3.3.2 電極與微加熱器之製作 25 3.3.3 微加熱器保護層製作 25 3.3.4 背蝕刻 25 3.3.5 WO3感測層沉積 26 3.3.6 退火實驗 27 3.4 氣體量測系統 28 第四章 實驗結果 29 4.1 WO3粉末研磨 29 4.2 大尺寸晶片製作 32 4.3 氣體初步量測 34 4.4 小尺寸晶片製作 36 4.4.1 晶片製作 36 4.4.2 熱像儀分析 39 4.5 小尺寸晶片氣體量測 40 4.5.1 NH3量測 40 4.5.2 穩定度實驗 41 4.5.3 H2S量測 43 4.6 感測粉末退火實驗 44 第五章 結論與未來展望 53 參考文獻 55   圖目錄 圖1.1正常受試者與氣喘患者呼出氣體中的NO濃度[2] 2 圖1.2患者治療前、後呼出之NO濃度差異[2] 3 圖1.3不同疾病對應患者呼出氣體中13種揮發性有機化合物的濃度[3] 3 圖1.4對應17種疾病的59種檢測特徵[3] 4 圖1.5 AIoT未來發展趨勢 5 圖1.6 (a)通入不同濃度時H2S時在室溫中的響應,H2S在5分時通入並於15分時移除。(b)為室溫下H2S濃度與響應的關係。[16] 7 圖1.7 (a)溫度在600K時連續通入不同濃度H2S時的響應。(b) 600K時H2S濃度與響應的關係。[16] 8 圖1.8響應-溫度關係圖 8 圖1.9 Kida以酸化合成法製成的片狀WO3[14] 9 圖1.10參雜少量的SnO2改善片狀結構的堆疊情形 10 圖1.11以水熱法製造出的WO3粒子[20] 10 圖1.12 Au/ WO3 TEM影像[20] 11 圖1.13操作溫度255℃下量測二甲苯,濃度範圍1-20ppm[20] 11 圖2.1在乾淨空氣中WO3表面氣體離子吸附情形 14 圖2.2環境存在還原性氣體時,與WO3表面氧體離子反應脫離 15 圖2.3 WO3氣體感測器組成概念圖 15 圖2.4 WO3氣體感測器結構設計 16 圖2.5 WO3氣體感測器結構設計上視圖 16 圖2.6氣體量測系統 18 圖3.1實驗流程圖 19 圖3.2左為Φ2mm ZrO2研磨珠,右為WO3粉末 20 圖3.3粉末研磨方式 20 圖3.4球磨機、氧化鋯研磨珠與研磨示意圖 21 圖3.5奈米粉末分散機研磨 22 圖3.6超音波震盪研磨 22 圖3.7感測器製作流程 24 圖3.8WO3粉漿液點膠示意圖 26 圖3.9點膠設備系統 26 圖3.10快速熱退火系統 27 圖3.11晶片安裝於PCB上並打線 28 圖3.12氣體量測系統 28 圖4.1 WO3粉漿經過168小時研磨的外觀比較 29 圖4.2 WO3粉末研磨前之SEM影像 30 圖4.3 WO3粉末研磨20小時後之SEM影像 30 圖4.4 WO3粉末研磨168小時候之SEM影像 31 圖4.5鎳電極與微加熱器結構 32 圖4.6微加熱器上覆蓋一層由PECVD沉積之SiO2 33 圖4.7點膠後感測層覆蓋於電極上 33 圖4.8 250ppb之H2S於分別於溫度200℃、250℃與350℃時的感測響應 34 圖4.9於250℃檢測380ppb之NO時之電阻值變化 35 圖4.10小尺寸晶片設計 36 圖4.11微加熱器與電極對 37 圖4.12微加熱器絕緣披覆層 37 圖4.13電極對上沉積SnO2並完成背蝕刻掏空 37 圖4.14晶圓切割 38 圖4.15打上金線的PCB 38 圖4.16打上金線並點膠完成的PCB 38 圖4.17熱像儀之熱影像結果 39 圖4.18電壓-感測膜中心溫度關係圖 40 圖4.19 2ppm的NH3分別在1.8V、2.4V、3V的價熱狀態下的量測結果 41 圖4.20 6ppm-H2連續5次感測之響應圖 42 圖4.21不同濃度 H2連續感測響應圖 42 圖4.22 50ppb、100ppb與665ppb的H2S於2.4V時的量測結果 43 圖4.23 WO3粉末於150℃退火處理後之SEM影像 45 圖4.24 WO3粉末於250℃退火處理後之SEM影像 45 圖4.25 WO3粉末於300℃退火處理後之SEM影像 46 圖4.26 WO3粉末於350℃退火處理後之SEM影像 46 圖4.27 WO3粉末於400℃退火處理後之SEM影像 47 圖4.28 WO3粉末於450℃退火處理後之SEM影像 47 圖4.29 WO3粉末於150℃時之XRD結果(掃描角度為15∘至100∘) 49 圖4.30 WO3粉末於250℃時之XRD結果(掃描角度為15∘至100∘) 49 圖4.31 WO3粉末於300℃時之XRD結果(掃描角度為15∘至100∘) 50 圖4.32 WO3粉末於350℃時之XRD結果(掃描角度為15∘至100∘) 50 圖4.33 WO3粉末於400℃時之XRD結果(掃描角度為15∘至100∘) 51 圖4.34 WO3粉末於450℃時之XRD結果(掃描角度為15∘至100∘) 51 圖4.35 WO3粉末於150℃至450℃之XRD結果比較圖 52 圖5.1八合一晶片設計 54   表目錄 表3.1研磨方式比較 23 表3.2感測晶片製程薄膜厚度參數 23 表4.1微加熱器之加溫數據 39

    [1] Qutayba Hamid, David R Springall, Valentina Riveros-Moreno, et al., "Induction of nitric oxide synthase in asthma", The Lancet, 1993, Vol. 342, No.8886, p. 1510-1513.
    [2] S. A. Kharitonov, D. Yates, R. A. Robbins, et al., "Increased nitric oxide in exhaled air of asthmatic patients", The Lancet, 1994, Vol. 343, No.8890, p. 133-135.
    [3] M. K. Nakhleh, H. Amal, R. Jeries, et al., "Diagnosis and Classification of 17 Diseases from 1404 Subjects via Pattern Analysis of Exhaled Molecules", ACS Nano, 2017, Vol. 11, No.1, p. 112-125.
    [4] Gady Konvalina and Hossam Haick, "Sensors for Breath Testing: From Nanomaterials to Comprehensive Disease Detection", Account of chemical research, 2014, Vol. 47, No.1, p. 66-76.
    [5] G. Peng, M. Hakim, Y. Y. Broza, et al., "Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors", Br J Cancer, 2010, Vol. 103, No.4, p. 542-51.
    [6] C. Garzella, E. Comini, E. Tempesti, et al., "TiO2 thin films by a novel sol–gel processing for gas sensor applications", Sensors and Actuators B: Chemical, 2000, Vol. 68, p. 189-196.
    [7] Tae Song Kim, Yong Bum Kim, Kwang Soo Yoo, et al., "Sensing characteristics of dc reactive sputtered WO3 thin films as an NOx gas sensor", Sensors and Actuators B: Chemical, 2000, Vol. 62, p. 102-108.
    [8] B. Bhooloka Rao, "Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour", Materials Chemistry and Physics, 2000, Vol. 64, p. 62-65.
    [9] G.S. Trivikrama Rao and D. Tarakarama Rao, "Gas sensitivity of ZnO based thick film sensor to NH3 at room temperature", Sensors and Actuators B: Chemical, 1999, Vol. 55, p. 166-169.
    [10] John S. Suehle, Richard E. Cavicchi, Michael Gaitan, et al., "Tin Oxide Gas Sensor Fabricated Using CMOS Micro-Hotplates and In-Situ Processing", IEEE ELECTRON DEVICE LETTERS, 1993, Vol. 14, No.3, p. 118-120.
    [11] Bee-Yu Wei, Ming-Chih Hsu, Pi-Guey Su, et al., "A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature", Sensors and Actuators B: Chemical, 2004, Vol. 101, No.1-2, p. 81-89.
    [12] Yongfa Zhu, Jinjun Shi, Zhenyu Zhang, et al., "Development of a Gas Sensor Utilizing Chemiluminescence on Nanosized Titanium Dioxide", Analytical Chemistry, 2002, Vol. 74, No.1, p. 120-124.
    [13] P. J. Shaver, "Activated Tungsten Oxide Gas Detectors", Applied Physics Letters, 1967, Vol. 11, No.8, p. 255-257.
    [14] Tetsuya Kida, Aya Nishiyama, Zhongqiu Hua, et al., "WO3 nanolamella gas sensor: porosity control using SnO2 nanoparticles for enhanced NO2 sensing", Langmuir, 2014, Vol. 30, No.9, p. 2571-9.
    [15] Dae-Sik Lee, Ki-Hong Nam, and Duk-Dong Lee, "Effect of substrate on NO2 -sensing properties of WO3 thin film", Thin Solid Films, 2000, Vol. 375, p. 142-146.
    [16] L. F. Reyes, A. Hoel, S. Saukko, et al., "Gas sensor response of pure and activated WO3 nanoparticle films made by advanced reactive gas deposition", Sensors and Actuators B: Chemical, 2006, Vol. 117, No.1, p. 128-134.
    [17] L. G. Teoh, Y. M. Hon, J. Shieh, et al., "Sensitivity properties of a novel NO2 gas sensor based on mesoporous WO3 thin film", Sensors and Actuators B: Chemical, 2003, Vol. 96, No.1-2, p. 219-225.
    [18] Ziyue Zhang, Mahmood haq, Zhen Wen, et al., "Ultrasensitive ppb-level NO2 gas sensor based on WO3 hollow nanosphers doped with Fe", Applied Surface Science, 2018, Vol. 434, p. 891-897.
    [19] Nguyen Van Hieu, Vu Van Quang, Nguyen Duc Hoa, et al., "Preparing large-scale WO3 nanowire-like structure for high sensitivity NH3 gas sensor through a simple route", Current Applied Physics, 2011, Vol. 11, No.3, p. 657-661.
    [20] Feng Li, Sijia Guo, Jingli Shen, et al., "Xylene gas sensor based on Au-loaded WO3 ·H2O nanocubes with enhanced sensing performance", Sensors and Actuators B: Chemical, 2017, Vol. 238, p. 364-373.
    [21] M. Penza, M.A. Tagliente, L. Mirenghi, et al., "Tungsten trioxide (WO3) sputtered thin films for a NOx gas sensor", Sensors and Actuators B: Chemical, 1998, Vol. 50, p. 9-18.
    [22] J. Shieh, H.M. Feng, M.H. Hon, et al., "WO3 and W-Ti-O thin-film gas sensors prepared by sol–gel dip-coating", Sensors and Actuators B: Chemical, 2002, Vol. 86, p. 75-80.
    [23] Hoshi K1, Yamano Y, Mitsunaga A, et al., "Gastrointestinal diseases and halitosis: association of gastric Helicobacter pylori infection", Int Dent J, 2002, Vol. 52, No.3, p. 207-211.
    [24] David R. Linden, "Hydrogen Sulfide Signaling in the Gastrointestinal Tract", Antioxid Redox Signa, 2014, Vol. 20, No.5, p. 818-830.
    [25] Sudha B. Singh and Henry C. Lin, "Hydrogen Sulfide in Physiology and Diseases of the Digestive Tract", Microorganisms, 2015, Vol. 3, No.4, p. 866-889.
    [26] Roger F. Butterworth, Jean-François Giguère, Jean Michaud, et al., "Ammonia: Key factor in the pathogenesis of hepatic encephalopathy", Neurochemical Pathology, 1987, Vol. 6, No.1-2, p. 1-12.
    [27] Dominic R. Aldridge, Edward J. Tranah, and Debbie L. Shawcross, "Pathogenesis of Hepatic Encephalopathy: Role of Ammonia and Systemic Inflammation", J Clin Exp Hepatol, 2015, Vol. 5, No.1, p. 7-20.
    [28] A.Al Mohammad and M.Gillet, "Phase transformations in WO3 thin films during annealing", Thin Solid Films, 2002, Vol. 408, p. 302-309.

    QR CODE