研究生: |
黃偉丞 Huang, Wei-Cheng |
---|---|
論文名稱: |
WO3奈米粉末感測層氣體感測器之開發 The Development of Gas Sensor Based on WO3 Nano Particle Sensing Film |
指導教授: |
傅建中
Fu, Chien-Chung |
口試委員: |
陳致真
Chen, Chih-Chen 薛丁仁 Hsueh, Ting-Jen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 三氧化鎢 、氣體感測器 、奈米粉末 |
外文關鍵詞: | Tungsten trioxide, Gas sensor, Nanoparticle |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
日常生活中,大部份的氣體為無色無味,人類的嗅覺沒辦法準確分辨氣體的種類。當空氣中存在著一些對人體有害的氣體時,假若能以氣體感測器偵測,做適當的處理,則可確保人身安全。金屬氧化物半導體對氣體具備的良好檢測特性,隨著微機電製造技術的成熟,感測晶片能夠微小化,易於整合於攜帶式裝置上,並且能夠大量生產,具備結構簡單、低成本的特點。
本研究將開發一種電阻式半導體氣體感測器,使用三氧化鎢(Tungsten oxide, WO3)作為感測材料,將WO3材料研磨至奈米等級的顆粒尺寸,以點膠的方式附著於感測晶片上,製作出具有高表面積的多孔感測層。並將微加熱器製作於晶片中,量測時能夠由晶片上的加熱器加熱至所需的量測溫度,不須額外提供熱源。最終製作出的感測晶片能夠對低濃度(50-665ppb)的H2S有著優異的響應,並且在H2的重複量測實驗中驗證了感測器的穩定度。
在本篇論文最後,提出複合感測晶片的概念,將八個感測單元製作在一個晶片上,透過操作條件與感測材料的變化組合,量測時便能形成複合式的訊號,希望藉此方法能夠解決電阻式半導體氣體感測器選擇性較低的缺點,使其能有更多的應用。
In daily life, most of the gas is colorless and odorless, and human sense of smell cannot accurately distinguish the type of gas. When there are some gases harmful to the human body in the air, if it can be detected by the gas sensor and properly treated, that is able to ensure personal safety. Metal oxide semiconductors have good detection capabilities for gases. With the maturity of MEMS manufacturing technology, sensing chips can be miniaturized, easy to integrate on portable devices, and be mass-produced. It has the advantages of simple structure and low cost.
This study will develop a semiconductor gas sensor using tungsten oxide (WO3) as the sensing material. Mounted on the sensor chip in a dispensing approach to produce a porous sensing layer having a high surface area. The micro-heater is fabricated in the wafer and can be heated by the heater on the wafer to the desired measurement temperature without additional heat source. The resulting sensor was able to respond well to low concentrations (50-665 ppb) of H2S, and the stability of the sensor was verified in the repeated measurement experiment of H2.
At the end of this paper, the concept of a composite sensing wafer is proposed. The eight sensing units are fabricated on one chip, through the different combinations of operating con-ditions and sensing materials, a composite signal can be formed during the measurement. Hoping this approach can solve the disadvantage of the lower selectivity of the resistive sem-iconductor gas sensor, so that it can have more applications.
[1] Qutayba Hamid, David R Springall, Valentina Riveros-Moreno, et al., "Induction of nitric oxide synthase in asthma", The Lancet, 1993, Vol. 342, No.8886, p. 1510-1513.
[2] S. A. Kharitonov, D. Yates, R. A. Robbins, et al., "Increased nitric oxide in exhaled air of asthmatic patients", The Lancet, 1994, Vol. 343, No.8890, p. 133-135.
[3] M. K. Nakhleh, H. Amal, R. Jeries, et al., "Diagnosis and Classification of 17 Diseases from 1404 Subjects via Pattern Analysis of Exhaled Molecules", ACS Nano, 2017, Vol. 11, No.1, p. 112-125.
[4] Gady Konvalina and Hossam Haick, "Sensors for Breath Testing: From Nanomaterials to Comprehensive Disease Detection", Account of chemical research, 2014, Vol. 47, No.1, p. 66-76.
[5] G. Peng, M. Hakim, Y. Y. Broza, et al., "Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors", Br J Cancer, 2010, Vol. 103, No.4, p. 542-51.
[6] C. Garzella, E. Comini, E. Tempesti, et al., "TiO2 thin films by a novel sol–gel processing for gas sensor applications", Sensors and Actuators B: Chemical, 2000, Vol. 68, p. 189-196.
[7] Tae Song Kim, Yong Bum Kim, Kwang Soo Yoo, et al., "Sensing characteristics of dc reactive sputtered WO3 thin films as an NOx gas sensor", Sensors and Actuators B: Chemical, 2000, Vol. 62, p. 102-108.
[8] B. Bhooloka Rao, "Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour", Materials Chemistry and Physics, 2000, Vol. 64, p. 62-65.
[9] G.S. Trivikrama Rao and D. Tarakarama Rao, "Gas sensitivity of ZnO based thick film sensor to NH3 at room temperature", Sensors and Actuators B: Chemical, 1999, Vol. 55, p. 166-169.
[10] John S. Suehle, Richard E. Cavicchi, Michael Gaitan, et al., "Tin Oxide Gas Sensor Fabricated Using CMOS Micro-Hotplates and In-Situ Processing", IEEE ELECTRON DEVICE LETTERS, 1993, Vol. 14, No.3, p. 118-120.
[11] Bee-Yu Wei, Ming-Chih Hsu, Pi-Guey Su, et al., "A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature", Sensors and Actuators B: Chemical, 2004, Vol. 101, No.1-2, p. 81-89.
[12] Yongfa Zhu, Jinjun Shi, Zhenyu Zhang, et al., "Development of a Gas Sensor Utilizing Chemiluminescence on Nanosized Titanium Dioxide", Analytical Chemistry, 2002, Vol. 74, No.1, p. 120-124.
[13] P. J. Shaver, "Activated Tungsten Oxide Gas Detectors", Applied Physics Letters, 1967, Vol. 11, No.8, p. 255-257.
[14] Tetsuya Kida, Aya Nishiyama, Zhongqiu Hua, et al., "WO3 nanolamella gas sensor: porosity control using SnO2 nanoparticles for enhanced NO2 sensing", Langmuir, 2014, Vol. 30, No.9, p. 2571-9.
[15] Dae-Sik Lee, Ki-Hong Nam, and Duk-Dong Lee, "Effect of substrate on NO2 -sensing properties of WO3 thin film", Thin Solid Films, 2000, Vol. 375, p. 142-146.
[16] L. F. Reyes, A. Hoel, S. Saukko, et al., "Gas sensor response of pure and activated WO3 nanoparticle films made by advanced reactive gas deposition", Sensors and Actuators B: Chemical, 2006, Vol. 117, No.1, p. 128-134.
[17] L. G. Teoh, Y. M. Hon, J. Shieh, et al., "Sensitivity properties of a novel NO2 gas sensor based on mesoporous WO3 thin film", Sensors and Actuators B: Chemical, 2003, Vol. 96, No.1-2, p. 219-225.
[18] Ziyue Zhang, Mahmood haq, Zhen Wen, et al., "Ultrasensitive ppb-level NO2 gas sensor based on WO3 hollow nanosphers doped with Fe", Applied Surface Science, 2018, Vol. 434, p. 891-897.
[19] Nguyen Van Hieu, Vu Van Quang, Nguyen Duc Hoa, et al., "Preparing large-scale WO3 nanowire-like structure for high sensitivity NH3 gas sensor through a simple route", Current Applied Physics, 2011, Vol. 11, No.3, p. 657-661.
[20] Feng Li, Sijia Guo, Jingli Shen, et al., "Xylene gas sensor based on Au-loaded WO3 ·H2O nanocubes with enhanced sensing performance", Sensors and Actuators B: Chemical, 2017, Vol. 238, p. 364-373.
[21] M. Penza, M.A. Tagliente, L. Mirenghi, et al., "Tungsten trioxide (WO3) sputtered thin films for a NOx gas sensor", Sensors and Actuators B: Chemical, 1998, Vol. 50, p. 9-18.
[22] J. Shieh, H.M. Feng, M.H. Hon, et al., "WO3 and W-Ti-O thin-film gas sensors prepared by sol–gel dip-coating", Sensors and Actuators B: Chemical, 2002, Vol. 86, p. 75-80.
[23] Hoshi K1, Yamano Y, Mitsunaga A, et al., "Gastrointestinal diseases and halitosis: association of gastric Helicobacter pylori infection", Int Dent J, 2002, Vol. 52, No.3, p. 207-211.
[24] David R. Linden, "Hydrogen Sulfide Signaling in the Gastrointestinal Tract", Antioxid Redox Signa, 2014, Vol. 20, No.5, p. 818-830.
[25] Sudha B. Singh and Henry C. Lin, "Hydrogen Sulfide in Physiology and Diseases of the Digestive Tract", Microorganisms, 2015, Vol. 3, No.4, p. 866-889.
[26] Roger F. Butterworth, Jean-François Giguère, Jean Michaud, et al., "Ammonia: Key factor in the pathogenesis of hepatic encephalopathy", Neurochemical Pathology, 1987, Vol. 6, No.1-2, p. 1-12.
[27] Dominic R. Aldridge, Edward J. Tranah, and Debbie L. Shawcross, "Pathogenesis of Hepatic Encephalopathy: Role of Ammonia and Systemic Inflammation", J Clin Exp Hepatol, 2015, Vol. 5, No.1, p. 7-20.
[28] A.Al Mohammad and M.Gillet, "Phase transformations in WO3 thin films during annealing", Thin Solid Films, 2002, Vol. 408, p. 302-309.