簡易檢索 / 詳目顯示

研究生: 李昇叡
Lee, Sheng-Jui
論文名稱: 以 Fragment Charge Difference 及 Generalized Mulliken-Hush 方法執行電子轉移耦合之全初始計算: 應用於在光激發及振動影響下之剛性鍵橋連接之電子予體-受體分子系統
指導教授: 陳益佳
Chen, I-Chia
許昭萍
Hsu, Chao-Ping
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 63
中文關鍵詞: 光誘發電子轉移generalized Mulliken-Hush 方法fragment charge difference 方法多態模型對稱性振動耦合
外文關鍵詞: Photoinduced electron transfer, generalized Mulliken-Hush, fragment charge difference, multi-state model, symmetry, vibronic coupling
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們使用fragment charge difference (FCD) [A. A. Voityuk and N. J. Rösch, Chem. Phys. 117, 5607 (2002)] 及 generalized Mulliken-Hush (GMH) [R. J. Cave and M. D. Newton, Chem. Phys. Lett. 249, 15 (1996), R. J. Cave and M. D. Newton, J. Chem. Phys. 106, 9213 (1997)] 等方法進行光激發電子轉移中電子耦合值之計算。我們測試了以不同芳香環作為電子予體之分子,並且發現予體片段之兩局部激發態具有不同之對稱性,導致截然不同之電子轉移速率。經由對稱性之判斷,我們發現在電子耦合值極小之情況下,GMH方法較FCD方法存在著問題。在一些情況下,電荷轉移之變遷組成存在於兩局部激發態中。此時,我們可以用三態模型 (3-state model) 來處裡GMH方法 [M. Rust, J. Lappe, and R. J. Cave, J. Phys. Chem. A 106, 3930 (2002)],並且可用於FCD方法。簡單的矩陣對角化亦可解決此一問題,其結果並與三態模型來比較。最後,電子轉移速率可被計算並與實驗結果作比較。我們亦利用Medvedev及Stuchebrukhov之式子 [E. S. Medvedev and A. A. Stuchebrukhov, J. Chem. Phys. 107, 3821 (1997)] 進行多環橋鍵結之分子在振動模式影響下之電子轉移速率計算。振動模式之影響解釋了在對稱性不允許的情況下,電子轉移過程仍可發生的可能性。我們估算出經由振動影響之平均耦合值,與實驗結果相當。


    The electronic coupling values for photo-induced electron transfer (ET) were calculated by the fragment charge difference (FCD) [A. A. Voityuk and N. J. Rösch, Chem. Phys. 117, 5607 (2002)] and the generalized Mulliken-Hush (GMH) schemes [R. J. Cave and M. D. Newton, Chem. Phys. Lett. 249, 15 (1996), R. J. Cave and M. D. Newton, J. Chem. Phys. 106, 9213 (1997)]. We tested several molecules with several different aromatic donors and acceptor combinations, and found that the lowest two local excited (LE) states of each molecule are very different in their ET rates due to their symmetries. We found that the FCD is less prone to problems commonly seen in the GMH scheme especially when the coupling values are small. For a 3-state case where the charge transfer (CT) state is coupled with two different locally excited (LE) states, we propose to follow the 3-state approach for the GMH scheme [M. Rust, J. Lappe, and R. J. Cave, J. Phys. Chem. A 106, 3930 (2002)], and found that it works well with the FCD scheme. A simplified direct diagonalization based on the Rust’s 3-state scheme was also proposed and tested. The overall electron transfer (ET) coupling rates were also calculated and compared to experimental results. We also used several rigid, polycyclic DBA molecules to test for the vibronic effect on the electronic coupling of a rigid donor-bridge-acceptor molecule by Medvedev and Stuchebrukhov’s expression [E. S. Medvedev and A. A. Stuchebrukhov, J. Chem. Phys. 107, 3821 (1997)]. The vibronic effect offers an averaged ET coupling value that is consistent to the observed ET rate in the symmetry forbidden case.

    1. Introduction 1 References 3 2. Theoretical characterization of photoinduced electron transfer in rigidly linked donor-acceptor molecules: the fragment charge difference and the generalized Mulliken-Hush schemes 5 2.1. Introduction 5 2.1.1. Coupling value 9 2.2. Theory and methods 10 2.2.1. Electronic coupling 10 2.2.2. Image charge approximation 12 2.2.3. Multi-state method 13 2.2.4. Reorganization energy and Gibbs free energy 15 2.3. Results 17 2.3.1. Molecules 17 2.3.2. Assignments of the locally excited (LE) states and charge transfer (CT) state 19 2.3.3. Electronic couplings 21 2.3.3.1. Testing for the FCD coupling calculations 21 2.3.4. The coupling values 24 2.3.4.1. The forbidden cases 24 2.3.4.2. The allowed cases 25 2.3.4.3. The weakly allowed cases 25 2.3.5. Electron transfer rates 27 2.4. Conclusion 31 References 37 3. Ab initio calculation of vibronic effects on electron transfer reaction rates 41 3.1. Introduction 41 3.1.1. Coupling value 41 3.1.2. Vibronic coupling rate 42 3.2. Theory and methods 43 3.2.1. Vibrational wavefunction 43 3.2.2. Vibrational frequencies, reduced masses, force constants, and displacements of polyatomic molecule 44 3.2.3. Vibrational calculation in Q-Chem Program 45 3.2.4. Vibronic coupling rate 47 3.2.5. Vibronic coupling term 48 3.2.5.1. Expansion of the coupling term 48 3.2.5.2. Coupling with the displacement and normal mode 49 3.2.6. Root-mean-square coupling value 51 3.2.6.1 Mean-square displacement 51 3.3. Results and discussions 52 3.3.1. Molecules 52 3.3.2. Reorganization energy 53 3.3.3. Vibronic coupling value 54 3.3.4. Vibronic coupling electron transfer rate 56 3.4. Conclusion 59 References 62

    1. Introduction
    [1] R. A. Marcus and N. Sutin, Biochim. Biophys. Acta 811, 265 (1985).
    [2] V. Balzani, Electron Transfer in Chemistry, 1-5 Vols (Wiley-VCH: Weinheim, 2001).
    [3] J. Jortner and M. Bixon, Electron Transfer-From Isolated Molecules to Biomolecules, Parts 1-2 (Wiley-Interscience: New York, 1999).
    [4] P. F. Barbara, T. J. Meyer, and M. A. Ratner, J. Phys. Chem. 100, 13148 (1996).
    [5] D. M. Adams, L. Brus, C. E. D. Chidsey, S. Creager, C. Creutz, C. R. Kagan, P. V. Kamat, M. Lieberman, S. Lindsay, R. A. Marcus, R. M. Metzger, M. E. Michel-Beyerle, J. R. Miller, M. D. Newton, D. R. Rolison, O. Sankey, K. S. Schanze, J. Yardley, and X. J. Zhu, Phys. Chem. B 107, 6668 (2003).
    [6] A. Avriam and M. A. Ratner, Chem. Phys. Lett. 29, 277 (1974).
    [7] R. M. Metzger, Chem. Rev. 103, 3803 (2003).
    [8] A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice, Chem. Rev. 97, 1515 (1997).
    [9] W. B. Davis, W. A. Svec, M. A. Ratner, and M. R. Wasielewski, Nature 396, 60 (1998).
    [10] R. Ballardini, V. Balzani, A. Credi, M. T. Gandolfi, and M. Venturi, Acc. Chem. Res. 34, 445 (2001).
    [11] D. M. Guldi, Chem. Soc. Rev. 31, 22 (2002).
    [12] H. Imahori, Y. Mori, and Y. Matano, J. Photochem. Photobiol. C: Photochem. Rev. 4, 51 (2003).
    [13] D. R. Kanis, M. Ratner, and T. J. Marks, Chem. Rev. 94, 195 (1994).
    [14] S. D. Bella, Chem. Soc. Rev. 30, 355 (2001).
    [15] J. R. Winkler and H. B Gray, Chem. Rev. 92, 369 (1992).
    [16] T. Pascher,J. R. Winkler and H. B. Gray, J. Am. Chem. Soc., 120, 1102 (1998).
    [17] V. May and O. Kuhn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley-VCH: Weinheim, 2004)
    [18] A. Aviram and M. A. Ratner, Molecular electronics : science and technology (Academy of Sciences: New York, 1998)
    [19] R. A. Marcus, Discuss. Faraday Soc. 29, 21 (1960).
    [20] J. R. Heath, Annu. Rev. Mater. Res. 39, 1 (2009).
    [21] J. R. Heath and M. A. Ratner, Physics Today, 56, 9 (2003).
    [22] A. Amini and A. Harriman, J. Photochem. Photobiol. C: Photochem. Rev., 4, 115 (2003).
    [23] R. A. Marcus, J. Chem. Phys. 43, 679 (1965).
    [24] T. J. Chow, N. R. Chiu, H. C. Chen, C. Y. Chen, W. S. Yu, Y. M. Cheng, C. C. Cheng, C. P. Chang, and P. T. Chou, Tetrahedron 59, 5719 (2003).
    [25] Y. Zeng and M. B. Zimmt, J. Am. Chem. Soc. 96, 8395 (1992).
    [26] A. A. Voityuk and N. J. Rosch, Chem. Phys. 117, 5607 (2002).
    [27] R. J. Cave and M. D. Newton, Chem. Phys. Lett. 249, 15 (1996).
    [28] R. J. Cave and M. D. Newton, J. Chem. Phys. 106, 9213 (1997).
    [29] E. S. Medvedev and A. A. Stuchebrukhov, J. Chem. Phys. 107, 3821 (1997).

    2. Theoretical characterization of photoinduced electron transfer in rigidly linked donor-acceptor molecules: the fragment charge difference and the generalized Mulliken-Hush schemes
    [1] R. A. Marcus and N. Sutin, Biochim. Biophys. Acta 811, 265 (1985).
    [2] V. Balzani, Electron Transfer in Chemistry, 1-5 Vols (Wiley-VCH: Weinheim, 2001).
    [3] J. Jortner and M. Bixon, Electron Transfer-From Isolated Molecules to Biomolecules, Parts 1-2 (Wiley-Interscience: New York, 1999).
    [4] P. F. Barbara, T. J. Meyer, and M. A. Ratner, J. Phys. Chem. 100, 13148 (1996).
    [5] D. M. Adams, L. Brus, C. E. D. Chidsey, S. Creager, C. Creutz, C. R. Kagan, P. V. Kamat, M. Lieberman, S. Lindsay, R. A. Marcus, R. M. Metzger, M. E. Michel-Beyerle, J. R. Miller, M. D. Newton, D. R. Rolison, O. Sankey, K. S. Schanze, J. Yardley, and X. J. Zhu, Phys. Chem. B 107, 6668 (2003).
    [6] A. Avriam and M. A. Ratner, Chem. Phys. Lett. 29, 277 (1974).
    [7] R. M. Metzger, Chem. Rev. 103, 3803 (2003).
    [8] A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice, Chem. Rev. 97, 1515 (1997).
    [9] W. B. Davis, W. A. Svec, M. A. Ratner, and M. R. Wasielewski, Nature 396, 60 (1998).
    [10] R. Ballardini, V. Balzani, A. Credi, M. T. Gandolfi, and M. Venturi, Acc. Chem. Res. 34, 445 (2001).
    [11] D. M. Guldi, Chem. Soc. Rev. 31, 22 (2002).
    [12] H. Imahori, Y. Mori, and Y. Matano, J. Photochem. Photobiol. C: Photochem. Rev. 4, 51 (2003).
    [13] D. R. Kanis, M. Ratner, and T. J. Marks, Chem. Rev. 94, 195 (1994).
    [14] S. D. Bella, Chem. Soc. Rev. 30, 355 (2001).
    [15] V. May and O. Kuhn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley-VCH: Weinheim, 2004)
    [16] A. Aviram and M. A. Ratner, Molecular electronics : science and technology (Academy of Sciences: New York, 1998)
    [17] B. S. Brunschwig, J. Logan, M. D. Newton, and N. Sutin, J. Am. Chem. Soc. 102, 5798 (1980)
    [18] M. D. Newton and N. Sutin, Annu. Rev. Phys. Chem. 35, 437 (1984).
    [19] L. Landau, Phys. Z. Sowjetunion 2, 46 (1932).
    [20] C. Zener, Proc. R. Soc. London, Ser. A 137, 696 (1932).
    [21] C. Zener, Proc. R. Soc. London, Ser. A 140, 660 (1933)
    [22] R. A. Marcus, Discuss. Faraday Soc. 29, 21 (1960).
    [23] R. A. Marcus, J. Chem. Phys. 43, 679 (1965).
    [24] A. A. Voityuk and N. J. Rosch, Chem. Phys. 117, 5607 (2002).
    [25] R. J. Cave and M. D. Newton, Chem. Phys. Lett. 249, 15 (1996).
    [26] R. J. Cave and M. D. Newton, J. Chem. Phys. 106, 9213 (1997).
    [27] R. A. Marcus and H. Eyring, Annu. Rev. Phys. Chem. 15, 155 (1964).
    [28] M. D. Newton, Chem. Rev. 91, 767 (1991).
    [29] T. J. Chow, N.-R. Chiu, H.-C. Chen, C.-Y. Chen, W.-S. Yu, Y.-M. Cheng, C.-C. Cheng, C.-P. Chang, and P.-T. Chou, Tetrahedron 59, 5719 (2003).
    [30] T. J. Chow, Y.-S. Hon, C.-Y. Chen, and M.-S. Huang, Tetrahedron Lett. 40, 7799 (1999).
    [31] N.-R. Chiou, T. J. Chow, C.-Y. Chen, M.-A. Hsu, and H.-C. Chen, Tetrahedron Lett. 42, 29 (2001).
    [32] C. Liang and M. D. Newton, J. Phys. Chem. 97, 3199 (1993).
    [33] H. L. Friedman, Mol. Phys. 29, 1533 (1975).
    [34] H.-C. Chen and C.-P. Hsu, J. Phys. Chem. A 109, 11989 (2005).
    [35] M. Rust, J. Lappe, and R. J. Cave, J. Phys. Chem. A 106, 3930 (2002).
    [36] X.-d. Zhang, Y.-n. Wang, J.-x. Guo, and Q.-y. Zhang, J. Photochem. Photobiol. A: Chem. 121, 1 (1999).
    [37] G. Pourtois, D. Beljonne, J. Cornil, M. A. Ratner, J. L. Bredas, J. Am. Chem. Soc. 124, 4436 (2002).
    [38] A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
    [39] W. J. Hehre, R. Ditchfield, and J.A. Pople, J. Chem. Phys. 56, 2257 (1972).
    [40] HyperChem Release 7.0(Hypercube Inc.: Gainesville, FL).
    [41] D. Rehm and A.Weller, Isr. J. Chem. 8, 259 (1970).
    [42] E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
    [43] M. E. Casida, Recent Advances in Density Functional Methods, Part I (World Scientific: Singapore, 1995)
    [44] J. E. Del Bene, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 55, 2236 (1971).
    [45] J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, J. Phys. Chem. 96, 135 (1992).
    [46] Y. Shao, L. Fusti-Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O Neill, R. A., Jr. Distasio, R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. van Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock III, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil, A. Warshel, W. J. Hehre, H. F. Schaefer III, J. Kong, A. I. Krylov, P. M.W. Gill, and M. Head-Gordon, Phys. Chem. Chem. Phys. 8, 3172 (2006).
    [47] J. R. Platt, J. Chem. Phys. 17, 484 (1949).
    [48] P. B. Karadakov, J. Phys. Chem. A 112, 7303 (2008).
    [49] M. Lamotte, S. Risemberg, A. -M Merle, and J. Joussot-Dubien, J. Chem. Phys. 69, 3639 (1978).
    [50] M. Head-Gordon, A. M. Grana, D. Maurice, and C. A. White, J. Phys. Chem. 99, 14261 (1995).
    [51] A. Dreuw and M. Head-Gordon, J. Am. Chem. Soc. 126, 4007 (2004).
    [52] R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980).
    [53] T. H. Dunning, J. Chem. Phys. 53, 2823 (1970).
    [54] T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
    [55] C. Creutz, M. D. Newton, and N. J. Sutin, Photochem. Photobiol. A: Chem. 82, 47 (1994).
    [56] J. E. Subotnik, S. Yeganeh, R. J. Cave, and M. A. Ratner, J. Chem. Phys. 129, 244101 (2008).
    [57] K.-L. Liu, S.-J. Lee, I-C. Chen, C.-P. Hsu, M.-Y. Yeh, and T.-Y. Luh, J. Phys. Chem. C xxx, xxxx (2010).
    [58] X.-Y. Li, J.-B. Wang, J.-Y. Ma., K.-X. Fu, and F.-Z. He, Sci. China Ser. B:Chem. 51, 1246 (2008).
    [59] J. R. Reimers and N. S. Hush, Chem. Phys. 146, 105 (1990).
    [60] E.-M. Voigt, J. Am. Chem. Soc. 86, 3611 (1964).
    [61] M. J. Mobley, K. E. Rleckhoff, E.-M. Voigt, J. Phys. Chem. 81, 810 (1976).
    [62] E. Haselbach, D. Pilloud, and P. Suppan, J. Chem. Soc. Faraday Trans. 91, 3123 (1995).
    [63] E. Haselbach, D. Pilloud, and P. Suppan, J. Chem. Soc. Faraday Trans. 92, 1085 (1996).
    [64] E. Haselbach, D. Pilloud, and P. Suppan, Helv. Chim. Acta. 81, 670 (1998).
    [65] O. Nicolet, N. Banerji, S. Pages, and E. Vauthey, J. Phys. Chem. A 109, 8236 (2005).

    3. Ab initio calculation of vibronic effects on electron transfer reaction rates
    [1] R. A. Marcus, Discuss. Faraday Soc. 29, 21 (1960).
    [2] R. A. Marcus, J. Chem. Phys. 43, 679 (1965).
    [3] H. Pal, Y. Nagasawa, K. Tominaga and K. Yoshihara, J. Phys. Chem. 100, 11964 (1996).
    [4] Z. Lin, C. M. Lawrence, D. Xiao, V. V. Kireev, S. S. Skourtis, J. L. Sessler, D. N. Beratan and I. V. Rubtsov, J. Am. Chem. Soc. 131, 18060 (2009).
    [5] G. A. Jones, B. K. Carpenter, and M. N. Paddon-Row, J. Am. Chem. Soc., 121, 11171 (1999).
    [6] G. A. Jones, M. N. Paddon-Row, B. K. Carpenter, and Piotr Piotrowiak, J. Phys. Chem. A, 106, 5011 (2002).
    [7] J. F. Endicott, M. A. Watzky, X. Song and T. Buranda, Coord. Chem. Rev., 159, 295 (1997).
    [8] E. S. Medvedev and A. A. Stuchebrukhov, J. Chem. Phys. 107, 3821 (1997).
    [9] A. A. Voityuk and N. J. Rosch, Chem. Phys. 117, 5607 (2002).
    [10] R. J. Cave and M. D. Newton, Chem. Phys. Lett. 249, 15 (1996).
    [11] R. J. Cave and M. D. Newton, J. Chem. Phys. 106, 9213 (1997).
    [12] I. Daizadeh, E. S. Medvedev, and A. A. Stuchebrukhov, Proc. Natl. Acad. Sci. USA 94, 3703 (1997).
    [13] D. N. Beratan, S. S. Skouritis, I. A. Balabin, A. Balaeff, S. Keinan, R. Venkatramani, and D. Xiao, Acc. Chem. Res. 42, 1669 (2009).
    [14] R. Langen, I.-J. Chang, J. P. Germanas, J. H. Richards, J. R. Winkler, and H. B. Gray, Science 268, 1733 (1995)
    [15] Y. Shao, L. Fusti-Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O Neill, R. A., Jr. Distasio, R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. van Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock III, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil, A. Warshel, W. J. Hehre, H. F. Schaefer III, J. Kong, A. I. Krylov, P. M.W. Gill, and M. Head-Gordon, Phys. Chem. Chem. Phys. 8, 3172 (2006).
    [16] R.C. Weast and M.J. Astle, Handbook of Chemistry and Physics, 63rd edition (Chemical Rubber Publishing: U.S.A. 1982-1983).
    [17] Matlab Release 7.0 (The MathWorks, Inc.).
    [18] G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, Chapter 13 (Academic Press: San Diego, 2001).
    [19] X.-d. Zhang, Y.-n. Wang, J.-x. Guo, and Q.-y. Zhang, J. Photochem. Photobiol. A: Chem. 121, 1 (1999).
    [20] A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
    [21] W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab Initio Molecular Orbital Theory (Wiley: New York, 1986).
    [22] J. E. Del Bene, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 55, 2236 (1971).
    [23] J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, J. Phys. Chem. 96, 135 (1992).
    [24] C. Moller and M. S. Plesset, Phys. Rev. 46, 618 (1934).
    [25] M. Head-Gordon, M. Oumi, and D. Maurice, Mol. Phys., 96, 593, (1999).
    [26] D. Casanova, Y.M. Rhee, and M. Head-Gordon, J. Chem. Phys., 128, 164106, (2008).
    [27] HyperChem Release 7.0 (Hypercube Inc.: Gainesville, FL).
    [28] Y. Zeng and M. B. Zimmt, J. Am. Chem. Soc. 96, 8395 (1992).
    [29] P. Finckh, H. Heitele, M. Volk, and M. E. Michel-Beyerle J. Phys. Chem., 92 6584 (1988).
    [30] J. J. Jortner, Chem. Phys., 64, 4860 (1976).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE