簡易檢索 / 詳目顯示

研究生: 陳尹儒
Chen, Yin-Ju
論文名稱: 分式運輸問題之型一與型二敏感度分析
Type I and Type II Sensitivity Analysis of the Fractional Transportation Problem
指導教授: 溫于平
Wen, Ue-Pyng
林吉仁
Lin, Chi-Jen
口試委員: 廖崇碩
Liao, Chung-Shou
翁偉泰
Weng, Wei-Tai
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 49
中文關鍵詞: 分式運輸問題敏感度分析退化標記演算法
外文關鍵詞: Fractional transportation problem, Sensitivity analysis, Degeneracy, Labeling algorithm
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之探討主題為分式運輸問題的敏感度分析。在傳統運輸問題之敏感度分析,以往研究僅討論擾動各成本係數下對於原問題之影響,而在現實環境中,除了考量成本之角度外,也必須同時考量公司之收益,因此分式運輸問題之敏感度分析將更符合實際案例之應用。另一方面,在傳統型一敏感度分析之內容,即為維持在原問題最佳解之基底不改變狀況下,計算該問題之參數擾動範圍的敏感度分析,然而若原問題具有退化之情形,此時將必須使用型二敏感度分析來處理該問題,該分析方法則為在保持目前最佳運輸量不變之情況下,計算該問題之參數擾動範圍的敏感度分析。因此,本論文發展出應用於分式運輸問題敏感度分析之標記演算法,該演算法分為兩部分,分別是處理退化及非退化兩類型之分式運輸問題;此外,分式運輸問題之目標函數為兩線性函數之比率,我們可以分別處理分子係數與分母係數之擾動。我們將發展四種演算法去處理類似問題,本文以一數值範例來說明所提出的演算法,最後再以一實際問題來說明各參數變動對於實際問題之經濟意義。


    This thesis concentrates on sensitivity analysis of the fractional transportation problem (FTP). Sensitivity analysis of the conventional transportation problem only discusses about the influence of perturbing cost coefficients. In the real environment, however, the company should take not only the cost point of view but also the profit into consideration. Hence, sensitivity analysis of the FTP is more practical for application of real-world problem. On the other hand, traditional type I sensitivity analysis is to determine the perturbation range in which the current optimal basis remains optimal. Note that degeneracy may occur in FTPs, so we have to use type II sensitivity analysis to deal with degenerate problems rather than type I sensitivity analysis. Type II sensitivity analysis is to determine the perturbation range in which the current optimal basis solutions with positive value still positive. Therefore, this thesis develops the labeling algorithm for solving the sensitivity analysis of the FTP. The proposed algorithms are divided into two parts for dealing with non-degenerate and degenerate FTP respectively. In addition, due to the objective function of the FTP is a ratio of two linear functions, we can deal with the perturbation of numerator coefficients and denominator coefficients respectively. Four algorithms will be developed for solving the related problems. Furthermore, a numerical example is presented to demonstrate the proposed algorithms and illustrate the economic interpretation of perturbation.

    摘要 I ABSTRACT II 誌謝詞 III LIST OF TABLES VI LIST OF FIGURES VII 1. INTRODUCTION 1 1.1 Preliminaries 1 1.2 Motivation and Purpose 5 1.3 Research Framework 5 2. LITERATURE REVIEW 7 2.1 The Fractional Transportation Problem 7 2.2 Three Types of Sensitivity Analysis 8 2.3 Sensitivity Analysis in OR Models 9 3. THE PROPOSED LABELING ALGORITHM 11 3.1 Problem Statement and Definition 11 3.2 Algorithm for Type I Sensitivity Analysis 14 3.2.1 Type I SA for the Perturbation of cp 16 3.2.2 Type I SA for the Perturbation of cq 18 3.3 Algorithm for Type II Sensitivity Analysis 19 3.3.1 Type II SA for the Perturbation of cp 20 3.3.2 Type II SA for the Perturbation of cq 24 4. NUMERICAL EXAMPLE 28 4.1 Type I SA of the Fractional Transportation Problem 28 4.2 Type II SA of the Fractional Transportation Problem 33 4.3 Discussion of Type I and Type II SA 43 5. CONCLUSION 46

    Bajalinov, E. B. (2003). Linear-fractional programming: theory, methods, applications and software. Boston, USA, Kluwer Academic Publishers.
    Bazaraa, M. S., Jarvis, J. J. & Sherali, H. D. (2010). Linear programming and network flows (4th ed). Hoboken, NJ, USA, Wiley-Interscience.
    Gupta, A. & Puri, M. C. (1995). Maximizing pseudoconvex transportation problem: a special type. OR Spektrum, 17, 27-30.
    Hadigheh, A. G. & Terlaky, T. (2006). Sensitivity analysis in linear optimization: Invariant support set intervals. European Journal of Operational Research, 169, 1158-1175.
    Hsieh, S. J. (2011). Sensitivity analysis under a perturbation of right-hand-side parameter in the transportation problem. Master Thesis, National Tsing Hua University, Hsinchu, Taiwan, ROC.
    Jain, M., Singh, P. & Saxena P. K. (2009). An optimizing algorithm for multiple objective fractional time transportation problem. International Advance Computing Conference 2009, 0, 266-271.
    Joshi, V. D. & Gupta, N. (2010). On a paradox in linear plus linear fractional transportation problem. Matematika, 26(2), 167-178.
    Koltai, T. & Terlaky, T. (2000). The difference between managerial and mathematical interpretation of sensitivity analysis results in linear programming. International Journal of Production Economics, 65, 257-274.
    Koltai, T. & Tatay, V. (2011). A practical approach to sensitivity analysis in linear programming under degeneracy for management decision making. International Journal of Production Economics, 131, 392-398.
    Lin, C. J. (2011). Determining Type II sensitivity ranges of the fractional assignment problem. Operations Research Letters, 39, 67-73.
    Lin, C. J. & Wen, U. P. (2003). Sensitivity analysis of the optimal assignment problem. European Journal of Operational Research, 149, 35-46.
    Lin, C. J. & Wen, U. P. (2007). Sensitivity analysis of objective function coefficients of the assignment problem. Asia-Pacific Journal of Operational Research, 24, 203-221.
    Lin, P. Y., Wen, U. P. & Lin, C. J. (2011). Advanced sensitivity analysis of the fuzzy assignment problem. Applied Soft Computing, 11(8), 5341-5349.
    Ma, K. T., Wen, U. P. & Lin, C. J. (2010). Support Set Invariant Sensitivity Analysis in Degenerate Transportation Problem. 11th Asia Pacific Industrial Engineering & Management Systems Conference 2010.
    Sivri, M., Emiroglu, I., Guler, C. & Tasci, F. (2011). A solution proposal to the transportation problem with the linear fractional objective function, International Conference on Modeling, Simulation and Applied Optimization 2011, 0, 1-9.
    Stancu-Minasian, I. M. (1997). Fractional programming: theory, methods and applications. Boston, USA, Kluwer Academic Publishers.
    Tkacenko, A. I. (2004). The multiobjective transportation fractional programming model. Computer Science Journal of Moldova, 12(3), 397-405.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE