簡易檢索 / 詳目顯示

研究生: 莊佳智
Chia-Chih Chuang
論文名稱: 以薄膜技術製作奈米碳管場發射顯示器面板研究
Study on carbon nanotube field emission display panel by thin film technique
指導教授: 黃金花
Jin-Hua Huang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 201
中文關鍵詞: 奈米碳管場發射顯示器薄膜技術直接成長化學氣相沉積
外文關鍵詞: carbon nanotube, field emission display, thin film technology, direct growth, chemical vapor deposition
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以微波加熱化學氣相沉積法,在475~750 oC的裂解溫度下,成功在矽基板與玻璃基板上成長直立式與低起始電場 (~ 0.1 V/□m) 之一維奈米碳基場發射子。本研究除了將一维奈米場發射子直接成長於陰極板外,另對成長溫度、組成、中間層、基板與成長機制進行研究與探討;另在多層壁奈米碳管場發射子薄膜及混合薄膜 (MWCNT + a-CNWs )的場發射特性上,進行不同組成奈米碳管薄膜之場發射特性驗證與探討。對於奈米碳管場發射特性,我們發現奈米碳管場發射子和基板間的附著性與碳氫鍵存在於管壁上,兩者都分別與場發射特性息息相關,其中純奈米碳管場發射薄膜與一維奈米碳基場發射子混合薄膜,其起始電場分別為 3.89 與0.11 V/□m。由實驗結果顯示碳氫鍵的出現,可有效降低場發射薄膜之起始電場,使得場發射增強因子相對增加,此效果因碳氫鍵存於非晶質奈米碳線上,使得場發射電子在較小的外加電場下容易生成,此現象稱為碳氫鍵效應或是 hydrogen termination effect。
    以微波加熱化學氣相沉積法成長直立式奈米碳管薄膜時,在各式金屬催化劑(鎳、鈷、鈀)薄膜下,先蒸鍍一層鈦金屬中間層,此鈦金屬對成長特性的影響及場發射特性變化,被有系統的研究,我們發現鈦作為中間層對奈米碳管顯微結構、準直性、附著性及場發射特性都有絕對的影響,其中,對以鎳和鈷金屬作為催化劑時,有更明顯的效果,然而,使用鎳及鈷作為催化劑所成長之奈米碳管薄膜,具有最佳的準直性及較高的石墨化程度;若以鈀作為催化劑時,非晶質石墨結構明顯增加,使得奈米碳管薄膜石墨化程度低於前兩者。但在場發射特性的表現上,以鈀作為催化劑所成長之奈米碳管薄膜,具有較低的起始電場(0.22 V/□m)與較高的場發射電流密度(2 mA/cm2 at 5 V/□m),而以鎳及鈷為催化劑時所成長之奈米碳管薄膜,其起始電場與場發射電流密度分別為0.56 V/□m、0.2 mA/cm2和 1.11 V/□m、1.15 mA/cm2,有此可知,含氫之非晶質石墨有降低起始電場及增加場發射電流密度的效果,此一效果對場發射特性的影響,在描述碳氫鍵效應時有詳細的探討,另在奈米碳管成長時鈦中間層對各式催化劑的影響也在此加以詳述。
    利用成長奈米碳管場發射子所獲得的成果,本研究已成功的在矽基板上製作三極式高密度場發射陣列結構,並完成實際場發射特性驗證,在奈米碳管場發射陣列中,最小的場發射方塊面積為 100 □m2,並具有一層鉻金屬柵極,此三極式高密度奈米碳管場發射陣列相當適合於小尺寸高解析度場發射面板使用。本研究所製作具二極式與三極式高密度奈米碳管場發射陣列元件,其場發射特性都在低於 2 × 10-5 torr高真空腔體中完成,陰極與柵極間以厚度為 1 □m的二氧化矽作為絕緣層。本研究所製作之三極式高密度奈米碳管場發射陣列陰極板,具有相當優異之場發射特性,在高電流密度特性部分 (10 mA/cm2),只須 3.75 V/□m電場大小即可滿足,且柵極電壓可控制在 10 V以內,如利用二極式場發射結構進行發光特性驗證時,以厚度 180 □m玻璃板為支撐層時,在不使用柵極時,只須在含螢光粉陽極板上施加 900 V的電壓,即可產約 1 mA的電流,此電流所產生之亮度可達 1800 cd/m2,此高密度奈米碳管場發射陰極板在場發射特性上優於其他團隊所製作之場發射陰極板甚多。利用本研究所成長之奈米碳管場發射子應用於高密度場發射陣列時,可產生具低柵極電壓、高亮度與高電流密度之奈米碳管場發射面板,不管是以金屬網製程或以黃光微影製程所製作之二極式與三極式奈米碳管場發射陰極板,都具有相當優異的場發射特性,且本研究所製作之奈米碳管場發射面板在使用單色螢光粉時,具有相當均勻的發光點分布,如使用三色全彩陽極板時,因陰陽極板對準性不佳而影響其發光特性,本研究已對奈米碳管場發射子成長、場發射陰極板製作及場發射面板點亮發光特性,進行完整詳細的探討,本研究所獲得的結果,期能對未來國內發展奈米碳管場發射顯示器產業有所幫助。


    We have synthesized alignment and low turn-on electric field (~ 0.1 V/□m) one dimensional carbon nano-materials at 475-750 °C on silicon wafer and soda-lime glass by a microwave heated chemical vapor deposition. The growth properties are studied as a function of the deposition temperature, substrates, components, Ti interlayer, and growth mechanism. Moreover, the field emission properties of multiwall carbon nanotube (MWCNT) films with and without amorphous carbon nanowiers (a-CNWs) were investigated. It is found that the C-H bonding and adhesion are strongly related to the field emission characteristics of carbon nanotube emitters. The turn-on electronic field of 3.89 V/□m for pure MWCNT films and 0.11 V/□m for a-CNWs in MWCNT films were obtained. The experimental results indicated that the existence of hydrogenated amorphous carbon (a-C:H) nanowires have a low turn-on electronic field. The low turn-on electronic field significantly which can be attributed to the larger field enhancement effect due to the increase of hydrogen termination on the a-CNWs. By a more complete understanding of the role of MWCNTs and a-CNWs, a generic model for field emission from a-CNWs in MWCNT films can be developed. Our observation concerning the lower turn-on electronic field and high field enhancement factor (□) is explained in terms of a-C: H effect.
    The effect of titanium interlayer for different catalysts (palladium, nickel, cobalt) on growth and field emission properties of vertically aligned carbon nanotube was systematically studied by microwave heated chemical vapor deposition. It was found that the Ti interlayer has a strong affected on the multi-wall nanotube microstructure, alignment, morphology, adhesion, and field emission characteristics. The interlayer of titanium is shown to influence the growth characteristic with Ni or Co. The multi-wall carbon nanotubes catalyzed by Ni or Co have the best alignment and graphitization, whereas those from Pd are existed with amorphous carbon and nano-particles on the surface. The field emission results show the MWCNTs on Pd catalyst exhibited a lower turn-on field at 0.22 V/□m and a much higher emission current density of 2 mA/cm2 at 5 V/□m compared to Ni or Co catalyst, which exhibited 0.56 V/□m and 0.2 mA/cm2, 1.11 V/□m and 1.15 mA/cm2. From field emission measurement, the lowest turn-on field is about 0.22 V/□m and can be attributed C-H bonding in amorphous carbon. Based on microstructure characterization and field emission measurement, influence on interlayer of Ti from different catalysts is discussed.
    We have fabricated a high density carbon nanotube field emitter arrays (FEAs) on silicon and characterized its field emission properties. The CNT field emitter arrays were successfully fabricated in one square block (10 × 10 □m2) by photolithography process on chromium electrode for field emission display application. Field emission characterization has been performed on the diode and triode type CNT cathode at room temperature in high vacuum chamber below 2 × 10-5 torr. The interlayer (insulator) between cathode and gate is 1 □m thick thermal SiO2. Our high density CNT field emitter arrays emit 10 mA/cm2 at electric field of 3.75 V/□m, the gate voltage was maintained always below 10 V in triode emission device, which is one order of magnitude lower than any other results. Emission images also showed homogeneous emission from a diode CNT-FED at an anode voltage of 900 V, and the current reaches 0.1 mA ( ~ 2 mA/cm2). Our high density CNT-FEAs demonstrated that the well emission characterization with high brightness in diode emission device and low gate voltage in triode emission device. Moreover, the diode and triode type CNT-FED panel were fabricated using metal mesh, thin film process and standard photolithography technologies, furthermore the emission image and problems of display panel manufacture were obtained and discussed.

    Contents Abstract (in Chinese) i Abstract (in English) iii Acknowledgements (in Chinese) v Contents vi Figure Captions ix 1 Introduction 1 1.1 Overview 1 2 Scientific literatures review 5 2.1 Field emission display 5 2.2 Emitter materials 7 2.2.1 Mo tip field emission display (Mo-FED) 8 2.2.2 Si tip field emission arrays (Si-FEAs) 13 2.2.3 Diamond film field emission display (D-FED) 17 2.2.4 Carbon nanotube field emission display (CNT-FED) 19 2.3 Manufacture processes of carbon nanotube field emission display 21 2.3.1 Screen printing 21 2.3.2 Photolithography and direct growth 28 2.4 Growth mechanisms of carbon nanotube emitters 33 2.4.1 Base growth mode of carbon nanotube 34 2.4.2 Tip growth mode of carbon nanotube 39 2.5 Raman spectroscopy 44 2.6 Theory of field emission 47 3 Experimental methods and equipments 51 3.1 One dimensional carbon nano-material emitter growth 51 3.2 Vertically aligned carbon base emitters direct growth on cathode plate 52 3.3 Construction of carbon nanotube field emission display cathode plate 52 3.4 Testing and measurement of emitter or device 53 3.5 Microwave heated chemical vapor deposition system 54 4 Carbon nano-emitters (CNEs) 56 4.1 Random orientation carbon nanotube emitters (CNEs) 58 4.1.1 High quality MWCNT emitters 58 4.1.2 The effect of C-H bonding in CNT emitters for field emission characteristics 76 4.1.3 Growth mechanism of CNEs on Ni/Si structure 85 4.2 Vertically aligned carbon nanotube emitters (CNEs) 91 4.2.1 The effect of Ni/Ti thickness ratio for vertically aligned MWCNT growth 92 4.2.2 Low temperature growth (<500 oC) MWCNT emitters 118 4.2.3 The effect of graphite layer on CNE tip 124 4.2.4 Growth model of CNEs on Ni/Ti/Si multilayer structure 127 4.3 Conclusion 130 5 Fabrication and characterization of cathode plate for field emission display application 132 5.1 Diode type cathode plate 133 5.1.1 Fabrication and structures of diode type cathode plate 133 5.1.2 The configurations and field emission characteristics of diode type cathode plate 136 5.1.3 The Ni/Ti/Si configuration for large area diode type cathode plate 141 5.2 Triode type cathode plate 147 5.2.1 Fabrication and structures of triode type cathode plate 147 5.2.2 The Ni/Cr/Si configuration and field emission characteristics for triode type cathode plate 153 5.2.3 The Ni/Ti/Si configuration and field emission characteristics for triode type cathode plate 160 5.3 Diode type CNT-FED panels and emission images 179 5.4 Triode type CNT FED panels and emission images 182 5.5 Conclusion 188 6 Summary and future works 191 6.1 Summary 191 6.2 Future works 194 References 196 Publication List 201

    Chapter 1
    [1.1] S. Iijima, Nature, 56, 354 (1991).
    [1.2] J. M. Bonard, H. Kind, T. Stockli, L. O. Nilsson, Solid State Electron. 45, 893 (2001).
    [1.3] X.P. Xu, G.R. Brandes, Appl. Phys. Lett., 74, 2549 (1999).
    [1.4] Q.H. Wang, T.D. Corrigan, J.Y. Dai, R.P.H. Chang, A.R. Krauss, Appl. Phys. Lett., 70, 3308 (1997).
    [1.5] A. M. Rao, D. Jacques, R. C. Haddon, W. Zhu, C. Bower, S. Jin, Appl. Phys. Lett., 76, 3813 (2000).
    [1.6] C. J. Lee, J. Park, S.Y. Kang, J.H. Lee, Chem. Phys. Lett., 326, 175 (2000).
    [1.7] Z. W. Pan, F. C. K. Au, H. L. Lai, W. Y. Zhou, L. F. Sun, Z. Q. Liu, D. S. Tang, C. S. Lee, S. T. Lee, S. S. Xie, J. Phys. Chem. B, 105, 1519 (2001).
    [1.8] H. Murakami, M. Hirakawa, C. Tanaka, H. Yamakawa, Appl. Phys. Lett., 76, 1776 (2001).
    [1.9] S. Fan, M.G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassel, H. Dai, Science, 283, 512 (1999).
    [1.10] J. M. Bonard, J. P. Salvetat, T. Stockli, W.A. de Heer, L. Forro, A. Chatelain, Appl. Phys. Lett., 73, 918 (1998).
    [1.11] W. Zhu, C. Bower, O. Zhou, G. Kochanski, S. Jin, Appl. Phys. Lett., 75, 873 (1999).
    [1.12] M. Sveningsson, R.E. Morjan, O.A. Nerushev, Y. Sato, J. Backstrom, E.E.B. Campbell, F. Rohmund, Appl. Phys. A:Mater. Sci. Proc., 73, 409 (2001).

    Chapter 2
    [2.1] Spindt CA. J. Appl. Phys. 39, 3504 (1968).
    [2.2] A. Ghis, R. Meyer, P. Rambaud, F. Levy, and T. Leroux, IEEE Trans. Electron Dev. 38, 2320 (1993).
    [2.3] H. W. Lee, Y. J. Park. J. W. Kin, J. H. Choi, and J. M. Kim, J. Vac. Sci. Technol. B. 17, 547 (1999).
    [2.4] J. M. Kim, H. W. Lee, Y. S. Choi, N. S. Lee, J. E. Jung, J. W. Kim, W. B. Choi, Y. J. Park, J. H. Choi, Y. w. Jin, W. K. Yi, N. S. Park, G. S. Park, and J. K. Chee, J. Vac. Sci. Technol. B. 18, 888 (2000).
    [2.5] J. Y. Oh, K. J. Woo, K. S. Kim, D. Y. Lee, and J. O. Choi, J. Vac. Sci. Technol. B. 19, 874 (2001).
    [2.6] D. H. Kim, Y. H. Song, Y. R. Cho, C. S. Hwang, B. C. Kim, S. D. Ahn, C. H. Chung, H. S. Uhm, J. H. Lee, K. I. Cho, and S. Y. Lee, IEEE Trans. Electron Dev. 49, 1136 (2002).
    [2.7] R. N. Thomas and H. C. Nathanson, Appl. Phys. Lett. 21, 384 (1972).
    [2.8] D. O. Smith, J. S. Judge, M. Trongello, and P. R. Thornton, U.S. Patent No. 3,970,887, July (1976).
    [2.9] H. S. Uh, S. J. Kwon, and J. D. Lee, J. Vac. Sci. Technol. B. 15, 472 (1997).
    [2.10] M. Nagao, Y. Tamura, T. Matsukawa, S. Kanemaru, J. Itoh, and K. Tokunaga, J. Vac. Sci. Technol. B. 20, 2309 (2002).
    [2.11] D. Hong, D. M. Aslam, IEEE Trans. Electron Dev. 46, 787 (1999).
    [2.12] W. B. Choi, N. S. Lee, W. K. Yi, Y. W. Jin, Y. S. Choi, I. T. Han, H, Y. Jang, H. Y. Kim, J. H. Kang, M. J. Yun, S. H. Park, S. G. Yu, J.. E. Jang, J. H. You, and J. M. Kim, J. Information Display, 1, 59 (2000).
    [2.13] J. L. Kwo, M. Yokoyama, W. C. Wang, F. Y. Chuang, and I. N. Lin, Diam. Relat. Mater, 9, 1270 (2000).
    [2.14] F. Ito, Y. Tomihari, Y. Okada, K. Konuma, and A. Okamoto, IEEE Electron Device lettwes, 22, 426 (2001).
    [2.15] D. S. Chung, S. H. Park, H. W. Lee, J. H. Choi, S. N. Cha, J. W. Kim, J. E. Jang, K. W. Min, S. H. Cho, M. J. Yoon, J. S. Lee, J. H. Yoo, J. M. Kim, J. E. Jung, Y. M. Jin, Y. J. Park, and J. B. You, Appl. Phys. Lett, 80, 4045 (2002).
    [2.16] J. E. Jung, Y. W. Jin, J. H. Choi, Y. J. Park, T. Y. Ko, D. S. Chuang, J. w. kim, J. E. Jang, S. N. Cha, w. K. Yi, S. H. Cho, M. J. Yoon, C. G. Lee, J. H. You, N. S. Lee, J. b. Yoo, and J. M. Kim, Physica B, 323, 71 (200).
    [2.17] K. B. Kim, Y. H. Song, C. S. Hwang, C. H. Chung, and J. H. Lee, J. Vac. Sci. Technol.B, 22, 1331 (2004).
    [2.18] K. J. Chen, W. K. Hong, C. P. Lin, K. H. Chen, L. C. Chen, and H. C. Cheng, IEEE Electron Device Letters, 22, 516 (2001).
    [2.19] Y. H. Lee, Y. T. Jang, D. H. Kim, J. H. Ahn, and B. K. Ju, Adv. Mater. 13, 479 (2001).
    [2.20] G Pirio, P Legagneux, D Pribat, K B K Teo, M Chhowalla, G A J Amaratunga and W I Milne, Nanotechnology, 13, 1 (2002).
    [2.21] I. T. Han, H. J. Kim, Y. J. Park, N. S. Lee, J. E. Jang. J. W. Kim, J. E. Jung, and J. M. Kim, Appl. Phys. Lett., 81, 2070 (2002).
    [2.22] Y. Huh, J.Y. Lee, J.H. Lee, T.J. Lee, S.C. Lyu,and C. J. Lee, Chem. Phys. Lett, 375, 388 (2003).
    [2.23] A. Gorbunov, O. Jost, W. Pompe, and A. Graff, Carbon, 40, 113 (2002).
    [2.24] Y. Saito, Carbon, 33, 979 (1995).
    [2.25] C. J. Lee, and J. H. Park, Appl. Phys. Lett., 77, 3397 (2000).
    [2.26] X. B. Wang, W. P. Hu, Y. Q. Liu, C. F. Long, Y. Xu. S. Q. Zhou, D. B. Zhu, and, L. Dai, Carbon, 39, 1533 (2001).
    [2.27] Z. Y. Juang, I. P. Chien, J. F. Lai, T. S. Lai, C. H. Tsai, Diam. Relat. Mater., 13, 1203 (2004).
    [2.28] M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, and W. I. Milne, J. Appl. Phys. 90, 5308 (2001).
    [2.29] X. F. Zhang, A. Y. Cao, B. Q. Wei, Y. H. Li, J. Q. Wei, C. Xu, and D. Wu, Chem. Phys. Lett. 362, 285 (2002).
    [2.30] S. Helveg, C. Lopez-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen, and J. K. Norskov, Nature, 427, 426 (2004).
    [2.31] C. Ducati, I. Alexandrou, M. Chhowalla, J. Roberson, and G. A. J. Amaratunga, J. Appl. Phys., 95, 6387 (2004).
    [2.32] W.H. Weber and R. Merlin, Raman Scattering in Materials Science, Springer 2000.
    [2.33] Michael J. Pelletier, Analytical Applications of Raman Spectroscopy, Blackwell Science 1999.
    [2.34] R. H. Fowler and L. W. Nordheim, Proc. R. Soc. (London) A119, 173 (1928).
    [2.35] R. Gomer, Field Emission and Field Ionization, American Institute of Physics: New York, 1993.

    Chapter 3
    [3.1] T. F. Kuo, A. Y. Juang, C. H. Tsai, Y. M. Tsau, H. F. Cheng, I. N. Lin, J. Vac. Sci. Technol. B, 19, 1030 (2001).

    Chapter 4
    [4.1] J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, and S. R. P. Silva, J. Appl. Phys., 80, 440 (1996).
    [4.2] C. J. Lee, D. W. Kim, T. J. Lee, Y. C. Choi, Y. S. Park, W. S. Kim, Y. H. Lee, W. B. Choi, N. S. Lee, J. M. Kim, Y. G. Choi, and S. C. Yu, Appl. Phys. Lett., 75, 1721 (1999).
    [4.3] G. Maurin, I. Stepanek, P. Bernier, J. F. Colomer, J. B. Nagy, and F. Henn, Carbon, 39, 1273 (2001).
    [4.4] W. Zhu, C. Bower, G. P. Kockanski, and S. Jin, Sol. State Electron, 45, 921 (2001).
    [4.5] V. I. Merkulov, D. H. Lowndes, L. R. Baylor, and S. Kang, Sol. State Electron, 45, 949 (2001).
    [4.6] S.C. Lin, Y. C. Cho, H. J. Jeong, Y. M. Shin, K. H. An, D. J. Bae, Y. H. Lee, N. S. Lee, and J. M. Kim, Adv. Mater., 13, 1563 (2001).
    [4.7] J. S. Suh, K. S. Jeong, J. S. Lee, and I. Han, Appl. Phys. Lett., 80, 2392 (2002).
    [4.8] N. S. Xu, Y. Chen, S. Z. Deng, J. Chen, X. C. Ma, and E. G. Wang, J. Phys. D. Appl. Phys., 34, 1597 (2001).
    [4.9] M. Sveningsson, R. E. Morjan, O. A. Nerusher, Y. Sato, J. Backstron, E. E. B. Campbell, and F. Rohmund, Appl. Phys. A., 73, 409 (2001).
    [4.10] S. Dimitrijevic, J. C. Withers, V. P. Mammana, O. R. Mouteiro, J. W. Ager Ⅲ, and I. G. Brown, Appl. Phys. Lett., 75, 2680 (1999).
    [4.11] Y. C. Choi, Y. M. Shin, S. C. Lim, D. J. Bae, Y. H. Lee, and D. C. Chung, J. Appl. Phys., 88, 4898 (2000).
    [4.12] A. Llie, A. C. Ferran, T. Yagi, and J. Robertson, Appl. Phys. Lett, 76, 2627 (2000).
    [4.13] R. D. Forrest, A. P. Burden, S. R. P. Silva, L. K. Cheah, and X. Shi, Appl. Phys. Lett., 73, 3784 (1998).
    [4.14] P. C. Eklund, J. M. Holden, and R. A. Jishi, Carbon, 33, 959 (1995).
    [4.15] J. Schuan, S. L. Irich, V. Batori, H. Ehrhardt, and S. R. P. Siwa, J. Appl. Phys., 80, 440 (1996).
    [4.16] J. Xu, X. Huang, W. Li, L. W, X. Huang, K. Chen, J. Xu, and I. H. Wilson, Appl. Phys. Lett., 79, 141 (2001).
    [4.17] Z. W. Pan, F. C. K. Au, H. L. Lai, W. Y. Zhou, L. F. Sun, Z. Q. Lin, D. S. Tang, C. S. Lee, S. T. Lee, S. S. Xie, J. Phys. Chem. B, 105, 1519 (2001).
    [4.18] A. Hart, B. S. Satyanarayana, W. I. Milne, and J. Robertson, Appl. Phys. Lett., 74, 1594 (1999).
    [4.19] J. Xu, X. Huang, W. Li, K. Chen, and J. Xu, J. Appl. Phys., 91, 5434 (2000).
    [4.20] A. Llie, A. Hart, A. J. Flewitt, J. Robertson, and W. I. Milne, J. Appl. Phys., 88, 6002 (2000).
    [4.21] Z. P. Huang, J.W. Xu, Z. F. Ren, J. H. Wang, M. P. Siegal, and P. N. Provencio, Appl. Phys. Latt., 73, 3854 (1998).
    [4.22] Y. T. Lee, J. Park, Y. S. Choi, H. Ryu, and H. J. Lee, J. Phys. Chem. B, 106, 7614 (2002).
    [4.23] C. Bower, O. Zhou, W. Zhu, D. J. Werder, and S. Jin, Appl. Phys. Latt., 77, 2767 (2000).
    [4.24] M. Jung, K. Y. Eun, Y. J. Baik, K. R. Lee, J. K. Shin, and S. T. Kim, Thin Solid Films, 398-399, 150 (2001).
    [4.25] M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, and W. I. Milne, J. Appl. Phys., 90, 5308 (2001).
    [4.26] C. M. Hsu, C. H. Lin, H. L. Chang, and C. T. Kuo, Thin Solid Films, 420-421, 225 (2002).
    [4.27] V. I. Merkulov, A. V. Melechko, M. A. Guillorn, D. H. Lowndes, and M. L. Simpson, Appl. Phys. Latt., 79, 2970 (2001).
    [4.28] Y. Avigal, and R. Kalish, Appl. Phys. Latt., 78, 2291 (2001).
    [4.29] C. Bower, W. Zhu, S. Jin, and O. Zhou, Appl. Phys. Latt., 77, 830 (2000).
    [4.30] Q. Yang, C. Xiao, W. Chen, A. K. Singh, and A. Hirose, Diam. Relat. Mater., 12, 1482 (2003).
    [4.31] C. F. Chen, C. L. Lin, and C. M. Wang, Thin Solid Films, 444, 64 (2003).
    [4.32] B. D. Yao, and N. Wang, J. Phys. Chem. B, 105, 11395 (2001).
    [4.33] J. S. Suh, and J. S. Lee, Appl. Phys. Latt., 75, 2047 (1999).
    [4.34] K. H. Lee, J. M. Cho, and W. Sigmund, Appl. Phys. Latt., 82, 448 (2003).
    [4.35] P. H. Lin, C. R. Lin, K. H. Chen, and L. C. Chen, J. Moder Phys. B, 16, 853 (2002).
    [4.36] Y. Shiratori, H. Hiraoka, Y. Takeuchi, S. Itoh, and M. Yamamoto, Appl. Phys. Lett., 82, 2485 (2003).
    [4.37] S. Hofmann, C. Ducati, B. Kleinsorge, and J. Robertson, Appl. Phys. Lett., 83, 4661 (2003).
    [4.38] S. Hofmann, C. Ducati, B. Kleinsorge, and J. Robertson, Appl. Phys. Lett., 83, 135 (2003).
    [4.39] Y. M. Shyu, and C. N. Hong, Mater. Chem. and Phys., 72, 223 (2001).
    [4.40] I. T. Han, H. J. Kim, Y. J. Park, N. Lee, and J. E. Jang, Appl. Phys. Lett., 2070 (2002).
    [4.41] J. H. Yen, I. C. Leu, C. C. Lin, and M. H. Hon, Diam. Relat. Mater., 13, 1237 (2004).

    Chapter 5
    [5.1] J. H. Huang, S. P. Chen, C. C. Chuang, I. N. Lin, and C. H. Tsai, Diam. Relat. Mater, 12, 481 (2003).
    [5.2] J. H. Huang, C. C. Chuang, C. H. Tsai, and W. J. Chen, J. Vac. Sci. Technol. B, 21, 1655 (2003).
    [5.3] Z. W. Pan, Frederick C. K. Au, H. L. Lai, W. Y. Zhou, L. F. Sun, Z. Q. Liu, D. S. Tang, C. S. Lee, S. T. Lee, and S. S. Xie, J. Phys. Chem. B, 105, 1519 (2001).
    [5.4] J. L. Kwo, Meiso Yokoyama, W. C. Wang, F. Y. Chuang, and I. N. Lin, Diam. Relat. Mater, 9, 1270 (2000).
    [5.5] N. S. Lee, D. S. Chung, I. T. Han, J. H. Kang, Y. S. Choi, H. Y. Kim, S. H. Park, Y. W. Jin, W. K. Yi, M. J. Yun, J. E. Jung, C. J. Lee, J. H. You, S. H. Jo, C. G. Lee, and J. M. Kim, Diam. Relat. Mater, 10, 265 (2001).
    [5.6] D. S. Chung, S. H. Park, H. W. Lee, J. H. Choi, S. N. Cha, J. W. Kim, J. E. Jang, K. W. Min, S. H. Cho, M. J. Yoon, J. S. Lee, C. K. Lee, J. H. Yoo, and J. M. Kim, Appl. Phys. Lett, 80, 4045 (2002).
    [5.7] J. E. Jung, Y. W. Jin, J. H. Choi, Y. J. Park, T. Y. Ko, D. S. Chung, J. W. Kim, J. E. Jang, S. N. Cha, W. K. Yi, S. H. Cho, M. J. Yoon, C. G. Lee, J. H. You, N. S. Lee, J. B. Yoo, and J. M. Kim, Physica B, 323, 71 (2002).
    [5.8] I. T. Han, H. J. Kim, Y. J. Park, N. S. Lee, J. E. Jang, J. W. Kim, J. E. Jung, and J. M. Kim, Appl. Phys. Lett, 81, 2070 (2002).
    [5.9] G. Pirio, P. Legagneux, D. Pribat, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, and W. I. Milne, Nanotechnology 13, 1 (2002).
    [5.10] Huh, J. Y. Lee, J. H. Lee, T. J. Lee, S. C. Lyu, and C. J. Lee, Chem. Phys. Lett, 375, 388 (2003).
    [5.11] T. Jang. C. H. Choi, B. K. Ju, J. H. Ahn, and Y. H. Lee, Thin Solid Films, 436, 298(2003).
    [5.12] I. Sohn, S. H. Lee, Appl. Phys. A 74, 287 (2002).
    [5.13] A. Guillorn, M. D. Hale, V. I. Merkulov, M. L. Simpson, G. Y. Eres, H. Cui, A. A. Puretzky, and D. B. Geohegan, Appl. Phys. Lett, 81, 2860 (2002).
    [5.14] H. Lee, Y. T. Jang, D. H. Kim, J. H. Ahn, B. K. Ju, Adv. Mater, 13, 479 (2001).
    [5.15] C. C. Chuang, J. H. Huang, W. J. Chen, C. C. Lee, and Y. Y. Chang, Diam. Relat. Mater., 13, 1012 (2004).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE