簡易檢索 / 詳目顯示

研究生: 李政穎
Lee, Cheng-Ying
論文名稱: 富含離胺酸及色胺酸的抗菌短鏈蛋白結構及功能研究
Structure and Function of a Lysine and Tryptophan Rich Antimicrobial Peptide
指導教授: 程家維
Cheng, Jya-Wei
口試委員: 陳金榜
龍鳳娣
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 53
中文關鍵詞: 抗菌胜肽色胺酸
外文關鍵詞: antimicrobial peptide, tryptophan
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 抗菌胜肽存在許多生物體中,為先天性防禦系統中的重要分子,能抵禦各種病原體的入侵。 為了克服細菌對抗生素產生抗藥性的問題,抗菌胜肽被視為極具潛力發展成用以替代傳統抗生素的藥物,因其主要是以物理性作用力對細菌細胞膜進行破壞及分解而造成細菌的死亡,且有些具有多重殺菌機制,較不易產生抗藥性。然而,在發展及設計新的抗菌胜肽上仍缺乏有系統可循的設計規則,因此我們希望能設計一個由簡單重覆序列組成的抗菌胜肽,希望藉此歸納出設計高抗菌力以及低溶血性的抗菌胜肽的設計規則。

    先前研究了PEM2 (KKWRWWLKALAKK),此短鏈且富含色胺酸( Trp-rich)的抗菌胜肽,顯示其對革蘭氏陽性菌及陰性菌皆具有抗菌能力,且對人類紅血球具低溶血性,將此序列進一步修改成PEM2-W5K/A9W (KKWRKWLKWLAKK),發現其抗菌力增加且仍維持低溶血性。因此在本次的研究中,我們根據PEM2及PEM2-W5K/A9W的研究結果,設計了一富含色胺酸和離胺酸的抗菌胜肽,序列中間含三個WLK的重複單位,而頭尾兩端則加上兩個Lys,命名為WLK (KKWLKWLKWLKKK)。與PEW2及PEM2-W5K/A9W相較,發現WLK的抗菌力以及對鹽的耐受度都較PEM2來得好,但比PEM2-W5K/A9W差,而三者則皆具低溶血性。為了進一步了解結構與抗菌活性之間的關係,我們運用二維核磁共振得知WLK與DPC微胞結合時於水溶液中的結構,發現其呈現α-螺旋結構且具有明顯的兩性(amphipathicity)特性。我們也運用了順磁遲豫增強效應( paramagnetic relaxation enhancement, PRE)的原理,以Gd(DTPA-BMA)及16-doxylstearic acid做為paramagnetic probe,探討胜肽與膜之間的位置以及深度。結果顯示抗菌胜肽埋入膜內較深,且與膜的接觸面較大者,具有較高抗菌力及較強的鹽耐受性,因此藉由增加與膜接觸的疏水面的疏水性,可能有助於設計出具高抗菌力的抗菌胜肽。


    摘要 ii Abstract iii 誌謝 v 目錄 vi 表目錄 viii 圖目錄 ix 縮寫對照 x 第一章 1 前言 1 1.1 抗生素抗藥性菌株的出現 1 1.2 抗菌胜肽的發展 1 1.3 抗菌胜肽的特性 2 1.4 抗菌胜肽的作用機制 3 1.5 富含色胺酸(tryptophan)的抗菌胜肽 4 1.6 目標 5 第二章 7 材料與方法 7 2.1 材料 7 2.2 最低抑菌濃度測試 7 2.2.1 液體培養基配製及菌株培養 8 2.2.2 胜肽定量 8 2.2.3 胜肽稀釋 9 2.3 最低殺菌濃度測試 9 2.4 不同鹽度與pH 值的抗菌活性測試 9 2.5 溶血性測試 10 2.6 單層大微脂粒(LUVs)以及micelles的製備 10 2.7 CD光譜 11 2.7.1 原理 11 2.7.2 實驗步驟 12 2.8 螢光實驗 12 2.8.1 螢光原理 12 2.8.2 實驗步驟 13 2.9 等溫滴定微量熱法(ITC) 14 2.9.1 儀器原理 14 2.9.2 實驗步驟 14 2.10 核磁共振(NMR) 14 2.11 分析計算 16 第三章 17 結果 17 3.1 抗菌及殺菌活性 17 3.2 不同鹽度與pH 值的抗菌活性測試 17 3.3 溶血活性 18 3.4 CD光譜 18 3.5 NMR 光譜及結構計算 19 3.6 螢光實驗 20 3.7 等溫滴定微熱量法 21 第四章 22 討論 22 附錄 25 參考文獻 51

    1. Andersson, D.I. and D. Hughes, Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol, 2010. 8(4): p. 260-71.
    2. Gandhi, N.R., P. Nunn, K. Dheda, H.S. Schaaf, M. Zignol, D. van Soolingen, et al., Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet, 2010. 375(9728): p. 1830-43.
    3. Gravenkemper, C.F., J.L. Brodie, and W.M. Kirby, Resistance of Coagulase-Positive Staphylococci to Methicillin and Oxacillin. J Bacteriol, 1965. 89: p. 1005-10.
    4. Dixson, S., W. Brumfitt, and J.M. Hamilton-Miller, In vitro activity of six antibiotics against multiresistant staphylococci and other gram-positive cocci. Eur J Clin Microbiol, 1985. 4(1): p. 19-23.
    5. Johnson, M.D. and C.F. Decker, Antimicrobial agents in treatment of MRSA infections. Dis Mon, 2008. 54(12): p. 793-800.
    6. Boman, H.G., I. Nilsson, and B. Rasmuson, Inducible antibacterial defence system in Drosophila. Nature, 1972. 237(5352): p. 232-5.
    7. Fjell, C.D., J.A. Hiss, R.E. Hancock, and G. Schneider, Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov, 2012. 11(1): p. 37-51.
    8. Hancock, R.E., Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis, 2001. 1(3): p. 156-64.
    9. Lienkamp, K. and G.N. Tew, Synthetic mimics of antimicrobial peptides--a versatile ring-opening metathesis polymerization based platform for the synthesis of selective antibacterial and cell-penetrating polymers. Chemistry, 2009. 15(44): p. 11784-800.
    10. Hancock, R.E. and H.G. Sahl, Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol, 2006. 24(12): p. 1551-7.
    11. Schittek, B., R. Hipfel, B. Sauer, J. Bauer, H. Kalbacher, S. Stevanovic, et al., Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat Immunol, 2001. 2(12): p. 1133-7.
    12. Lee, W.H., Y. Li, R. Lai, S. Li, Y. Zhang, and W. Wang, Variety of antimicrobial peptides in the Bombina maxima toad and evidence of their rapid diversification. Eur J Immunol, 2005. 35(4): p. 1220-9.
    13. Nguyen, L.T., E.F. Haney, and H.J. Vogel, The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol, 2011. 29(9): p. 464-72.
    14. Zasloff, M., Antimicrobial peptides of multicellular organisms. Nature, 2002. 415(6870): p. 389-95.
    15. Melo, M.N., R. Ferre, and M.A. Castanho, Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nat Rev Microbiol, 2009. 7(3): p. 245-50.
    16. Chan, D.I., E.J. Prenner, and H.J. Vogel, Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta, 2006. 1758(9): p. 1184-202.
    17. Sengupta, D., H. Leontiadou, A.E. Mark, and S.J. Marrink, Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim Biophys Acta, 2008. 1778(10): p. 2308-17.
    18. Epand, R.M. and H.J. Vogel, Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta, 1999. 1462(1-2): p. 11-28.
    19. Yau, W.M., W.C. Wimley, K. Gawrisch, and S.H. White, The preference of tryptophan for membrane interfaces. Biochemistry, 1998. 37(42): p. 14713-8.
    20. Schibli, D.J., R.F. Epand, H.J. Vogel, and R.M. Epand, Tryptophan-rich antimicrobial peptides: comparative properties and membrane interactions. Biochem Cell Biol, 2002. 80(5): p. 667-77.
    21. Park, K.H., Y.H. Nan, Y. Park, J.I. Kim, I.S. Park, K.S. Hahm, et al., Cell specificity, anti-inflammatory activity, and plausible bactericidal mechanism of designed Trp-rich model antimicrobial peptides. Biochim Biophys Acta, 2009. 1788(5): p. 1193-203.
    22. Selsted, M.E., M.J. Novotny, W.L. Morris, Y.Q. Tang, W. Smith, and J.S. Cullor, Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem, 1992. 267(7): p. 4292-5.
    23. Rozek, A., C.L. Friedrich, and R.E. Hancock, Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry, 2000. 39(51): p. 15765-74.
    24. Rubinchik, E., D. Dugourd, T. Algara, C. Pasetka, and H.D. Friedland, Antimicrobial and antifungal activities of a novel cationic antimicrobial peptide, omiganan, in experimental skin colonisation models. Int J Antimicrob Agents, 2009. 34(5): p. 457-61.
    25. Santamaria, C., S. Larios, S. Quiros, J. Pizarro-Cerda, J.P. Gorvel, B. Lomonte, et al., Bactericidal and antiendotoxic properties of short cationic peptides derived from a snake venom Lys49 phospholipase A2. Antimicrob Agents Chemother, 2005. 49(4): p. 1340-5.
    26. Murillo, L.A., C.Y. Lan, N.M. Agabian, S. Larios, and B. Lomonte, Fungicidal activity of a phospholipase-A2-derived synthetic peptide variant against Candida albicans. Rev Esp Quimioter, 2007. 20(3): p. 330-3.
    27. Araya, C. and B. Lomonte, Antitumor effects of cationic synthetic peptides derived from Lys49 phospholipase A2 homologues of snake venoms. Cell Biol Int, 2007. 31(3): p. 263-8.
    28. Wei, S.Y., J.M. Wu, Y.Y. Kuo, H.L. Chen, B.S. Yip, S.R. Tzeng, et al., Solution structure of a novel tryptophan-rich peptide with bidirectional antimicrobial activity. J Bacteriol, 2006. 188(1): p. 328-34.
    29. Yu, H.Y., K.C. Huang, B.S. Yip, C.H. Tu, H.L. Chen, H.T. Cheng, et al., Rational design of tryptophan-rich antimicrobial peptides with enhanced antimicrobial activities and specificities. Chembiochem, 2010. 11(16): p. 2273-82.
    30. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 3rd ed. Aproved standard. NCCLS document M7-A3. . 1993, Villanova, PA: National Committee for Clinical Laboratory Standards.
    31. Rothstein, D.M., P. Spacciapoli, L.T. Tran, T. Xu, F.D. Roberts, M. Dalla Serra, et al., Anticandida activity is retained in P-113, a 12-amino-acid fragment of histatin 5. Antimicrob Agents Chemother, 2001. 45(5): p. 1367-73.
    32. Eftink, M.R. and C.A. Ghiron, Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies. Biochemistry, 1976. 15(3): p. 672-80.
    33. Wiseman, T., S. Williston, J.F. Brandts, and L.N. Lin, Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem, 1989. 179(1): p. 131-7.
    34. Brunger, A.T., P.D. Adams, G.M. Clore, W.L. DeLano, P. Gros, R.W. Grosse-Kunstleve, et al., Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr, 1998. 54(Pt 5): p. 905-21.
    35. Brunger, A.T., Version 1.2 of the Crystallography and NMR system. Nat Protoc, 2007. 2(11): p. 2728-33.
    36. Koradi, R., M. Billeter, and K. Wuthrich, MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph, 1996. 14(1): p. 51-5, 29-32.
    37. Laskowski, R.A., J.A. Rullmannn, M.W. MacArthur, R. Kaptein, and J.M. Thornton, AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR, 1996. 8(4): p. 477-86.
    38. Woody, R.W., Contributions of tryptophan side chains to the far-ultraviolet circular dichroism of proteins. Eur Biophys J, 1994. 23(4): p. 253-62.
    39. Lakowicz, J.R., Principles of fluorescence spectroscopy. 1983, New York: Plenum Press.
    40. Gautier, R., D. Douguet, B. Antonny, and G. Drin, HELIQUEST: a web server to screen sequences with specific alpha-helical properties. Bioinformatics, 2008. 24(18): p. 2101-2.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE