研究生: |
謝景安 Sie, Jing-An |
---|---|
論文名稱: |
雷射激發光陰極電子槍直線加速器之束流動力學研究 Investigation of beam dynamics in a linac system equipped with laser-driven radio frequency electron gun |
指導教授: |
劉偉強
Lau, Wai-Keung 潘犀靈 Pan, Ci-Ling |
口試委員: |
張存續
Chang, Tsun-Hsu 李安平 Lee, An-Ping |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 光陰極電子槍 、直線加速器 、束流動力學 、速度群聚 、蕭特基效應 、空間電荷追蹤軟體 、高亮度電子束 、超短電子束 |
外文關鍵詞: | radio frequency electron gun, linac, beam dynamics, velocity bunching, Schottky effect, ASTRA, high brightness electron beam, ultra-short electron beam |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光注入器系統是許多新穎加速器設施所採用的低束散電子源裝置。我們利用調校系統中直線加速器加速電場的相位可控制速度群聚(Velocity bunching)機轉的發生,從而可以產生次皮秒量級的高亮度電子束脈衝供後端進行各種同調光源研究使用。由於過去分析光注入器中束流動力學所使用的電腦模擬軟體如PARMELA、GPT(Generic Particle Tracer)等都忽略了一些電子束在陰極附近所發生的物理現象如鏡電荷、蕭特基等效應,所建立的系統模型無法反映注入器系統在操作時一些實際狀況。因此,我們使用SUPERFISH/POISSON建立起系統中電磁波結構、螺線圈磁鐵之二維模型,並將這個數據檔導入一套較為完善的空間電荷追蹤軟體—ASTRA中,進行系統內的束流動力學分析並優化各個參數尋求產生最佳超短電子脈衝的操作條件。除此以外,我們亦將分析在各個操作參數有變動的情況下對高亮度束流特性的影響。
Photoinjectors are low-emittance electron sources being used in many modern accelerator facilities. A 2998 MHz photoinjector has been built for light source development at NSRRC. It is of interest to generate short electron pulses from this injector for coherent emission of THz radiation. By controlling the phase of accelerating field in the rf linac, a physical mechanism called “velocity bunching” that occurs in the linac can be used to produce sub-picosecond electron beam. Common space charge tracking codes such as PARMELA and GPT (Generic Particle Tracer) can be used to simulate space charge dynamics in photoinjectors. However, some physical phenomena that occur near photo-cathodes such as image charge, Schottky effects etc. have not been considered in these codes. In order to establish a more accurate simulation model for the NSRRC photoinjector system, we use SUPERFISH/POISSON to setup 2D models of electromagnetic wave structures (i.e. rf gun cavity and linac structure), gun and linac solenoid magnets for the space charge tracking code -- ASTRA. By optimization of system parameters, we seek for operating condition to produce electron pulses at shortest bunch length. In addition, we study the tolerances of the system to parameter changes.
[1] David H. Dowell. Lecture 2: Electron Emission and Cathode Emittanc.
[2] Dowell, D. & Schmerge, John. (2009). Quantum efficiency and thermal emittance of metal photocathodes. Reviews of Modern Physics - REV MOD PHYS. 12. 10.1103/PhysRevSTAB.12.074201.
[3] Kim, Kwang-Je. (1988). RF and space-charge effects in laser-driven rf electron guns (LBL--25807). United States.
[4] Carlsten, B.E. & Sheffield, R. & McVey, B.D.. (1990). Photoelectric injector designs at Los Alamos National Laboratory. Workshop on short pulse high current cathodes, Bendor (France), 18-22 Jun 1990. LA-UR-90-3180 ; CONF-9006242--2 ; DE06542005 ; NTIS, PC A03/MF A01 - OSTI; GPO Dep.. Size: Pages: (21 p)
[5] G. A. Loew, R. H. Miller, R. A. Early and K. L. Bane, "Computer Calculations of Traveling-Wave Periodic Structure Properties," in IEEE Transactions on Nuclear Science, vol. 26, no. 3, pp. 3701-3704, June 1979, doi: 10.1109/TNS.1979.4330585.
[6] Serafini, L., & Ferrario, M. (Aug 2001). Velocity bunching in photo-injectors. AIP Conference Proceedings, 581(1), 87-106. doi:101063/11401564
[7] Soby, Lars & Belohrad, David & Krupa, Michal & Odier, Patrick & Bergoz, Julien & Stulle, Frank. (2014). A New Integrating Current Transformer for the LHC.
[8] Hans Braun & Dourdan. (2008). CAS Beam diagnostic.
[9] Menzel, M T, & Stokes, H K. User`s guide for the POISSON/SUPERFISH Group of Codes. United States. doi:10.2172/10140823.
[10] Klaus Floettmann. (March 2017). ASTRA : A Space Charge Tracking Algorithm Version 3.2.
[11] Wen, Yung-Hsiang. (2017). Study on the Effect of Solenoid Magnetic Field on Beam Quality in Velocity Bunching.
[12] Gizzi, Leonida & Assmann, Ralph & Koester, Petra & Giulietti, Antonio. (2019). Laser-Driven Sources of High Energy Particles and Radiation. doi:10.1007/978-3-030-25850-4.
[13] Cianchi, Alessandro & Anania, Maria Pia & Bisesto, Fabrizio & Castellano, Michele & Chiadroni, Enrica & Pompili, Riccardo & Shpakov, Vladimir. (2016). Observations and Diagnostics in High Brightness Beams. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 829. 343-347. 10.1016/j.nima.2016.03.076.
[14] Edelen, Auralee & Neveu, Nicole & Frey, Matthias & Huber, Yannick & Mayes, Christopher & Adelmann, Andreas. (2020). Machine learning for orders of magnitude speedup in multiobjective optimization of particle accelerator systems. Physical Review Accelerators and Beams. 23. 10.1103/PhysRevAccelBeams.23.044601.