簡易檢索 / 詳目顯示

研究生: 衛子健
論文名稱: 染料敏化太陽電池之研究
A Study on Dye-sensitized Solar Cell
指導教授: 王詠雲
Yung-Yun Wang
萬其超
Chi-Chao Wan
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 96
語文別: 英文
論文頁數: 227
中文關鍵詞: 染料敏化太陽電池高分子包覆奈米白金簇對電極膠態高分子電解質二氧化鈦膜之後處裡
外文關鍵詞: Dye-sensitized solar cell, PVP capped Pt nano-clusters, counter electrode, gel type polymer electrolyte, TiO2 film treatment
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文闡述作者則博士班生涯中對「染料敏化太陽電池」系統 (DSSC)之研究整理。整個論文共有6章,其中包含前2章介紹性的整理文章以及含有實驗數據的後4章。各章節的詳細介紹如下:
    第一章介紹了一些有關太陽光的能量與性質及太陽電池的基本概念的介紹,包含了太陽光電的發展歷史、市場概況、量測原理及分類做一系統性的介紹。
    第二章則針對染料敏化太陽電池,做一完整的整理,文中至少包含了86篇以上參考資料的閱讀,經過作者的吸收與分類,從而以兩大類呈現,第一類介紹DSSC各部份元件,包含了基材,光電極,染料,電解質,對電極等,由原料選擇乃至於製作方法與性能測量比較。第二類則著重於DSSC基礎運作機理,從吸收光能,光電子注入,光電子傳遞乃至光電子收集等效應做一整理。
    第三章則針對二氧化鈦光電極的結構對效率的重要性做一介紹,此外更以文獻中提及的電極前處理或後處理,以商用二氧化鈦粉末為基礎,實作出DSSC,效率從未經任何處理時的3.89%提升至6.01%。
    第四章介紹了一種獨特的對電極製作方法以及性能測定。以作者實驗室從前發展在印刷電路板用的奈米鈀觸媒為基礎下,作者改良該系統並成功的應用在DSSC的對電極中。此種經由簡易的室溫浸鍍法製作的「高分子包覆之奈米鉑簇對電極」與常用的熱裂解鉑法或濺鍍鉑法相比,不僅鉑使用量低並且具有可接受的催化反應性能。經由詳細的電化學循環伏安分析後,作者發現包覆在奈米鉑簇四周的高分子對電解質中離子進出電極表面的擴散係數具有相當的影響。
    第五章則為一「鉑/鈦雙層結構的軟性對電極」的介紹。此一研究為與日本桐蔭橫濱大學宮阪力教授研究群共同研發之成果,主要為作者設計與實作出一種具有雙層金屬結構的塑膠對電極,外層金屬為鉑含量較多的催化鉑/鈦合金層內層則為無催化性的鈍性鈦層。此法可降低鉑使用量90%以上而維持相同的催化性能。使用此新穎對電極的軟性塑膠DSSC,效率可達4.31%。
    第六章敘述一種「具有交聯結構的微孔高分子膜」的製作方法,將此膜浸入液態電解質中後,此一濕膜可應用於DSSC的電解質。此系統不僅具有高離子導電度之優點,更由於交聯處理後,此膜的機械強度大增,減少了DSSC短路的機會並簡化了組裝程序。


    The dissertation describes the author’s findings relating to the dye-sensitized solar cell (DSSC) system during his PhD work. Six chapters including first two introductory reviews and later four experimental results are elaborated in this thesis. To give a clearer picture of this thesis, the main contents are summarized as follows:
    Chapter 1 introduces some general concepts of solar power and photovoltaic, including the magnitude of solar electricity potential and market, classification of solar cells and fundamentals of solar cell.
    Chapter 2 is a reviewing work which collects at least 86 listed references. After the author’s digestion, the contents of this chapter are classified into 2 main categories: the components of DSSC and the natures of DSSC. For better systemization, each topic is further splitted into several parts like substrates, anode materials and cathode materials…etc.
    Chapter 3 addresses on the significance of anode’s structure and the practical examinations from commercially available TiO2 nano-particles. By modifying or executing treatments on TiO2 films, the conversion efficiency of DSSC advances from 3.89% to 6.01% by employing commercial TiO2 nano-particles. The author also proposes future hints and directions for reaching highly efficient DSSC.
    Chapter 4 states a unique method to prepare catalytic cathode for DSSC. Based on the knowledge and findings developing for Pd-catalyst in printed-circuit board industry in author’s laboratory, he modifies that system and successfully applies it in DSSC field. The novel cathode, PVP-capped Pt nano-clusters are deposited on ITO glass via a simple 2-step dip-coating process. This materials exhibits fair good catalytic performance at relatively low Pt usage in comparison with sputtered Pt electrode. Data revealing in this chapter also suggests the PVP surrounding nano-Pt plays an important role on ion-diffusing property and catalytic performance. The most important contribution of this work is this method involves neither vacuum facilities nor high temperature environments; it can operate in ambient temperature for cheaply mass production.
    Chapter 5 introduces a novel cathode material for flexible DSSC. This is a internationally collaborative work with Prof. Miyasaka in Toin Yokohama University, Japan. We design and prepare a Pt/Ti bimetallic layer on PET film as an efficient counter electrode for flexible DSSC, the satisfying result exhibits not only highly catalytic performance on iodide/tri-iodide reaction but also low Pt usage by filling non-catalytic Ti under Pt-rich surface. Finally, a highly efficient flexible DSSC with 4.31% efficiency comprises TiO2 film on ITO-PEN and Pt/Ti counter electrode is fabricated.
    Chapter 6 illustrates the synthesis of a micro-porous polymer film with cross-linking structure system. After soaking in liquid electrolyte, the wet film can utilize as the electrolyte in DSSC. The benefit of this electrolyte system is it not only shows comparable ionic conductivity to that in pure liquid electrolyte but also exhibits high mechanical strength when compare to traditional gel electrolyte system. The author also point out the significance of film thickness in polymer electrolyte system.

    Abstract I 中文摘要 IV 致謝 VI Table of Contents VII List of Tables XI List of Figures XIII Chapter 1 Solar Electricity and Solar Cells 1 1-1 Solar Energy and Solar Irradiance 1 1-1.1 The Huge Solar Power 1 1-1.2 Solar Irradiance Intensity 3 1-1.3 Air Mass 6 1-1.4 Solar Energy Potential of Taiwan 9 1-2 Basic Concepts of Solar Cells 11 1-2.1 Current-voltage Characteristics of Solar Cells 11 1-2.2 Cell Efficiency (I-V curve) 13 1-2.3 Incident photons to current conversion efficiency 15 1-3 Classification of Solar Cell 17 1-3.1 The Crystalline Silicon-based Solar Cells 17 1-3.2 Thin Film Solar Cells 20 1-3.3 Comparison of Solar Cell and Solar Electricity Market…………22 1-4 Historical Review on DSSC 25 1-4.1 Photo-electrochemical Solar Cells 25 1-4.2 Dye sensitized solar cells 27 1-5 Motivation of this Study 31 Reference 34 Chapter 2 A Literature Survey on DSSC 37 2-1 The Components of DSSC 37 2-1.1 Substrate 37 2-1.2 The Meso-porous Photo-anode 41 2-1.3 Dye-the sensitizer 56 2-1.4 The Electrolyte 62 2-1.5 Counter Electrode 74 2-2 Natures of DSSC 84 2-2.1 Light Harvesting Efficiency 87 2-2.2 Electron Injection Efficiency 89 2-2.3 Electron Collection Efficiency 93 2-2.4 The Criteria for a High Efficiency DSSC 95 Reference 99 Chapter 3 Preparation of Highly Efficient TiO2 Film for DSSC from Commercial TiO2 Nano-particles 113 3-1 Modifications on TiO2 Films 113 3-1.1 Reducing the Photo-current Loss 114 3-1.2 Increasing Light Harvesting Efficiency 122 3-1.3 Increasing the Light Path Inside the Cell 124 3-1.4 Increasing Dye Adsorption Amount 126 3-1.5 Ideal Structure of Highly Efficient Photo-anode 129 3-2 Fabricating DSSCs from Commercially Available TiO2 Powder 131 3-2.1 Introduction 131 3-2.2 Experimental Procedure 131 3-2.3 Results & Discussions 137 3-2.4 Conclusions 155 Reference 156 Chapter 4 Immobilization of Poly (N-vinyl-2-pyrrolidone)-capped Platinum Nano-clusters on Indium-tin oxide Glass and its application in Dye-sensitized Solar Cells 162 4-1 Introduction 163 4-2 Experimental 167 4-2.1 Materials & Reagents 167 4-2.2 Sample Preparation 168 4-3 Results & Discussions 171 4-3.1 AFM Observations during Sample Preparation 171 4-3.2 Platinum Loading on ITO-glass 174 4-3.3 Electrochemical-catalytic Effect Analysis 174 4-3.4 Cyclic Voltammetry Analysis of Tri-iodide Reduction 178 4-3.5 Cell Efficiency 183 4-4 Conclusions 185 Reference 187 Chapter 5 A Platinum/Titanium Bi-layer Deposited on Polymer film as an Efficient Counter Electrode for Plastic DSSC…………………191 5-1 Introduction 192 5-2 Experimental 194 5-2.1 Materials & Reagents 194 5-2.2 Sample Preparation 195 5-3 Results & Discussions 197 5-3.1 Topography and Concentration Profile of Pt/Ti Film 197 5-3.2 Pt Loading in Pt/Ti on PEN 198 5-3.3 Electrochemical-catalytic Effect Analysis 198 5-3.4 CV Analysis 200 5-3.5 Cell Efficiency 201 5-4 Conclusions 203 5-5 Acknowledgement 203 Reference 204 Chapter 6 Preparation and Characterization of a Micro-porous Polymer Electrolyte with Cross-linking Network Structure for Dye-Sensitized Solar Cell 207 6-1 Introduction 207 6-2 Experimental 210 6-2.1 Materials & Reagents 210 6-2.2 Sample Preparation 211 6-2.3 Analysis Methods & Instruments 211 6-3 Results & Discussions 213 6-3.1 The Morphologies of dry PVdF-HFP/PEG/PEGDMA Films 213 6-3.2 Ion Conductivities of Wet PVdF-HFP/PEG/PEGDMA Films 214 6-3.3 Cell Efficiencies and Significance of Cell Gap in DSSC Fabricated with Gel Polymer Electrolytes 217 6-4 Conclusions 221 Reference 223 Main Publications for This Dissertation 227

    [1]. From the World Wide Web: http://www.solaronix.ch/TCO_transmission.htm
    [2]. G. Smestad, C. Bignozzi, and R. Argazzi, “Testing of dye sensitized TiO2 solar cells I: Experimental photocurrent output and conversion efficiencies”, Sol. Energy Mater. Sol. Cells, 32, 259 (1994).
    [3]. J. M. Kroon, N. J. Bakker, H. J. P. Smit, P .Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien and G. E. Tulloch, “Nanocrystalline Dye-sensitized Solar Cells Having Maximum Performance”, Prog. Photovolt: Res. Appl., in press.
    [4]. M. G. Kanga, N-G. Parka, K. S. Ryua, S. H. Changa, and K-J Kimb, “A 4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate.” Sol. Energy Mater. Sol. Cells, 90, 574 (2006).
    [5]. Y. Jun, and M. G. Kang, “The Characterization of Nanocrystalline Dye-Sensitized Solar Cells with Flexible Metal Substrates by Electrochemical Impedance Spectroscopy”, J. Electrochem. Soc., 154, B68(2007).
    [6]. X. Fang, T. Ma, M. Akiyama, G. Guan, S. Tsunematsu, and E. Abe, “Flexible counter electrodes based on metal sheet and polymer film for dye-sensitized solar cells”, Thin Solid Films, 472 242(2005).
    [7]. K. Keis, E. Magnusson, H. Lindstrom, S-E. Lindquist, and A. Hagfeldt, ”A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes”, Sol. Energy Mater. Sol. Cells, 73, 51(2002).
    [8]. Y. Hao, M. Yang, W. Li, X. Qiao, L. Zhang, S. Cai, “A photoelectrochemical solar cell based on ZnO/dye/polypyrrole fillm electrode as photoanode”, Sol. Energy Mater. Sol. Cells, 60, 349(2000).
    [9]. J. Wang, J.M. Bell, I.L. Skryabin, “Kinetics of charge injection in sol-gel deposited WO3”, Sol. Energy Mater. Sol. Cells, 56, 465(1999).
    [10]. S. Nakamura, and A. Yamamoto, “Electrodeposition of pyrite(FeS2) thin films for photovoltaic cells”, Sol. Energy Mater. Sol. Cells, 65, 79(2001).
    [11]. N-G. Park, J. van de Lagemaat, and A. J. Frank, “Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells”, J. Phys. Chem. B, 104, 8989(2000).
    [12]. J. Wienke, J.M. Kroon, P.M. Sommeling, R. Kinderman, M. Späth, J.A.M. van Roosmalen, W.C. Sinke, and S. Baumgärtner, “Effect of TiO2-electrode properties on the efficiency of nanocrystalline dye-sensitized solar cells (nc-DSC)”,14th European photovoltaic solar energy conference and exhibition, Barcelona, 2003.
    [13]. P. Wang, S. M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker, and Michael Grätzel, “Enhance the Performance of Dye-Sensitized Solar Cells by Co-grafting Amphiphilic Sensitizer and Hexadecylmalonic Acid on TiO2 Nanocrystals”, J. Phys. Chem. B, 107, 14336(2003).
    [14]. J. N. Hart, D. Menzies, Y-B Cheng, G. P. Simon, and L. Spiccia, “ TiO2 sol–gel blocking layers for dye-sensitized solar cells”, C. R. Chimie, 9, 622(2006).
    [15]. M.K. Nazeeruddin, A. Kay, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, “Conversion of Light to Electricity by cis-XzBis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes”, J. Am. Chem. Soc. 115, 6382(1993).
    [16]. C. Natarajan ,and G. Nogami, “Cathodic Electrodeposition of Nanocrystalline Titanium Dioxide Thin Films”, J. Electrochem. Soc., 143, 1547(1996).
    [17]. S. Karuppuchamy, D. P. Amalnerkar, K. Yamaguchi, T. Yoshida, T. Sugiura, and H. Minoura, “Cathodic electrodeposition of TiO2 Thin Films for Dye-Sensitized Photoelectrochemical Applications”, Chem. Lett., 30, 78(2001).
    [18]. T. Miyasaka, and Y. Kijitori, “Low-Temperature Fabrication of Dye-Sensitized Plastic Electrodes by Electrophoretic Preparation of Mesoporous TiO2 Layers”, J. Electrochem. Soc., 151, A1767(2004).
    [19]. T. Miyasaka, Y. Kijitori, T. N. Murakami, M. Kimura, and S. Uegusa,” Efficient Nonsintering Type Dye-sensitized Photocells Based on Electrophoretically Deposited TiO2 Layers”, Chem. Lett., 31, 1250(2002).
    [20]. T. N. Murakami, Y. Kijitori, N. Kawashima, and T. Miyasaka, “UV Light-assisted Chemical Vapor Deposition of TiO2 for Efficiency Development at Dye-sensitized Mesoporous Layers on Plastic Film Electrodes”, Chem. Lett., 32, 1076(2003).
    [21]. T. N. Murakami, Y. Kijitori, N. Kawashima, and T. Miyasaka, “Low temperature preparation of mesoporous TiO2 films for efficient dye-sensitized photoelectrode by chemical vapor deposition combined with UV light irradiation”, J. Photochem. Photobiol. A, 164, 187(2004).
    [22]. M. Fujimoto, T. Kado, W. Takashima, K. Kaneto, and Shuzi Hayase, “Dye-Sensitized Solar Cells Fabricated by Electrospray Coating Using TiO2 Nanocrystal Dispersion Solution”, J. Electrochem. Soc., 153, A826(2006).
    [23]. J. Halme, J. Saarinen, and P. Lund, “Spray deposition and compression of TiO2 nanoparticle films for dye-sensitized solar cells on plastic substrates”, Sol. Energy Mater. Sol. Cells, 90(2006) 887(2006).
    [24]. M. K. Nazeeruddin, P. Pe´chy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, Le Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, and M. Grätzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells”, J. Am. Chem. Soc., 123, 1613(2001).
    [25]. M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, J. Photochem. Photobiol. A, 164, 3(2004).
    [26]. B. O’Regan, M. Grätzel, ” A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 film”, Nature, 335, 737(1991)
    [27]. M. Grätzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells”, Inorg. Chem., 44, 6841(2005).
    [28]. S. Yanagida, “Recent research progress of dye-sensitized solar cells in Japan”, C. R. Chimie, 9, 597(2006).
    [29]. T. Horiuchi, H. Miura, S. Uchida, “Highly-efficient metal-free organic dyes for dye-sensitized solar cells”, Chem. Commun., 3036(2003).
    [30]. T. Horiuchi, H. Miura, K. Sumioka, S. Uchida,” High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes”, J. Am. Chem. Soc., 126, 12218(2004).
    [31]. T. Kitamura, M. Ikeda, K. Shigaki, T. Inoue, N.A. Anderson, X. Ai, T. Lian, S.Yanagida, “Phenyl-Conjugated Oligoene Sensitizers for TiO2 Solar Cells”, Chem. Mater., 16,1806(2003).
    [32]. K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H.Arakawa, ” A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%”, Chem. Commun., 569(2001).
    [33]. K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, “Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes”, Sol. Energy Mater. Sol. Cells, 77, 89(2003).
    [34]. K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, “Molecular Design of Coumarin Dyes for Efficient Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 107, 597(2003).
    [35]. K. Sayama, K. Hara, N. Mori, M. Satsuki, S. Suga, S. Tsukagoshi, Y. Abe, H. Sugihara, H. Arakawa, “Photosensitization of a porous TiO2 electrode with merocyanine dyes containing a carboxyl group and a long alkyl chain”, Chem. Commun., 1173(2000).
    [36]. K. Sayama, S. Tsukagoshi, K. Hara, Y. Ohga, A. Shinpou, Y. Abe, S. Suga, and H. Arakawa, “Photoelectrochemical Properties of J Aggregates of Benzothiazole Merocyanine Dyes on a Nanostructured TiO2 Film”, J. Phys. Chem. B, 106, 1363(2002).
    [37]. S. Yanagida, G.K.R. Senadeera, K. Nakamura, T. Kitamura, and Y.Wada, “Polythiophene-sensitized TiO2 solar cells”, J. Photochem. Photobiol. A: Chem., 166, 75(2004).
    [38]. G. Wolfbauer, A. M. Bond, J. C. Eklund, D. R. MacFarlane, “A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells”, Sol. Energy Mater. Sol. Cells, 70, 85(2001).
    [39]. P. Wang, S. M. Zakeeruddin, J-E. Moser, R. Humphry-Baker, and M. Grätzel, “A Solvent-Free, SeCN-/(SeCN)3- Based Ionic Liquid electrolyte for High-Efficiency Dye-Sensitized Nanocrystalline Solar Cell”, J. Am. Chem. Soc., 126, 7164(2004).
    [40]. G. Oskam, B. V. Bergeron,G. J. Meyer, P. C. Searson, “Pseudohalogens for Dye-Sensitized TiO2 Photoelectrochemical Cells”, J. Phys. Chem. B, 105, 6867(2001).
    [41]. D. Kuang, P. Wang, S. Ito, S. M. Zakeeruddin, and M. Grätzel, “Stable Mesoscopic Dye-Sensitized Solar Cells Based on Tetracyanoborate Ionic Liquid Electrolyte”, J. Am. Chem. Soc., 128, 7732(2006).
    [42]. N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhôte, H. Pettersson, A. Azam, and M. Grätzel, “The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications”, J. Electrochem. Soc., 143, 3099(1996).
    [43]. P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, and M. Grätzel, “Stable >8% efficient nanocrystalline dye-sensitized solar cell based on an electrolyte of low volatility”, Appl. Phys. Lett., 86, 123508(2005).
    [44]. P. Wang, S. M. Zakeeruddin, R. Humphry-Baker, and M. Grätzel, “A Binary Ionic Liquid Electrolyte to Achieve >7% Power Conversion Efficiencies in Dye-Sensitized Solar Cells”, Chem. Mater., 16, 2694(2004).
    [45]. R. Kawano, H. Matsui, C. Matsuyama, A. Sato, Md. Abu Bin Hasan Susan, N. Tanabe, and M. Watanabe, “High performance dye-sensitized solar cells using ionic liquids as their electrolytes”, J. Photochem. Photobiol. A, 164, 87(2004).
    [46]. Q. Dai, D. B. Menzies, D. R. MacFarlane, S. R. Batten, S. Forsyth, L. Spiccia,Y. B. Cheng, and M. Forsyth, “Dye-sensitized nanocrystalline solar cells incorporating ethylmethylimidazolium-based ionic liquid electrolytes C. R. Chimie, 9, 617(2006)
    [47]. V. Jovanovski, E. Stathatos, B. Orel, and P. Lianos, “Dye-sensitized solar cells with electrolyte based on a trimethoxysilane-derivatized ionic liquid”, Thin Solid Films, 511-512, 634(2006).
    [48]. R. Kawano and M. Watanabe, “Anomaly of charge transport of an iodide/tri-iodide redox couple in an ionic liquid and its importance in dye-sensitized solar cells”, Chem. Commun., 2107(2005).
    [49]. I. Ruff, V. J. Friedrich, and K. Csillag, “Transfer diffusion. III. Kinetics and mechanism of the triiodide-iodide exchange reaction”, J. Phys. Chem., 76, 162(1972).
    [50]. W. Kubo, S. Kambe, S. Nakade, T. Kitamura, K. Hanabusa, Y.Wada, and S.Yanagida, “Photocurrent-Determining Processes in Quasi-Solid-State Dye-Sensitized Solar Cells Using Ionic Gel Electrolytes”, J. Phys. Chem. B, 107, 4374(2003).
    [51]. K. Suzuki, M. Yamaguchi, S. Hotta, N. Tanabe, and S. Yanagida, “A new alkyl-imidazole polymer prepared as an inonic polymer electrolyte by in situ polymerization of dye sensitized solar cells”, J. Photochem. Photobiol. A, 164, 81(2004).
    [52]. Y. Liu, A. Hagfeldt, X. Xiao, and S.E. Lindquist, “Investigation of infuence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell”, Sol. Energy Mater. Sol. Cells., 55, 267(1998).
    [53]. S. Nakade, Y. Saito, W. Kubo, T. Kitamura, Y. Wada, S.Yanagida,” Influence of TiO2 Nanoparticle Size on Electron Diffusion and Recombination in Dye-Sensitized TiO2 Solar Cells”, J. Phys. Chem. B, 107, 8607(2003).
    [54]. S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori, and S. Yanagida, “Dependence of TiO2 Nanoparticle Preparation Methods and Annealing Temperature on the Efficiency of Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 106, 10004(2002).
    [55]. E. Palomares, J.N. Clifford, S.A. Haque, T. Lutz, and J.R. Durrant, “Control of Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Layers”, J. Am. Chem. Soc., 125, 475(2003).
    [56]. S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada, and S.Yanagida, “Role of Electrolytes on Charge Recombination in Dye-Sensitized TiO2 Solar Cell (1): The Case of Solar Cells Using the I-/I3- Redox Couple”, J. Phys. Chem. B, 109, 3480(2005).
    [57]. N. Papageorgiou, W. F. Maier, M. Grätzel, “An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media”, J. Electrochem. Soc., 144, 876(1997).
    [58]. N. Papageorgiou, “Counter-electrode function in nanocrystalline photoelectrochemical cell configurations”, Coord. Chem. Rev., 248, 1421(2004).
    [59]. A. Hauch, and A. Georg, “Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells”, Electrochim. Acta, 46, 3457(2001).
    [60]. V. A. Macagno, M. C. Giordano, “Kinetics and Mechanisms of Electrochemical Reactions on Platinum with Solutions of Iodine-Sodium Iodide in Acetonitrile”, Electrochim. Acta, 14, 335 (1969).
    [61]. V. A. Macagno, M. C. Giordano, “Study on the Iodide-Tri-iodide Redox Electrode in Dimethylsulphoxide”, Electrochim. Acta, 11, 1553 (1966).
    [62]. G. Wang, Y. Lin, X, Xiao, X. Li, and W. Wang, “X-ray photoelectron spectroscopy analysis of the stability of platinized catalytic electrodes in dye-sensitized solar cells”, Surf. Interface Anal., 36, 1437(2004).
    [63]. X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, and E. Abe, “Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell”, J. Electroanal. Chem., 570, 257(2004).
    [64]. X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, and E. Abe, “Performances characteristics of dye-sensitized solar cells based on counter electrodes with Pt films of different thickness”. J. Photochem. Photobiol. A. Chemistry, 164, 179(2004).
    [65]. S. S. Kim, Y. C. Nah, Y. Y. Noh, J. Jo, and D. Y. Kim, “Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells”, Electrochim. Acta, 51, 3814(2006).
    [66]. A. Kay and M. Grätzel, “Low cost photovoltaics modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder”, Sol. Energy Mater. Sol. Cells, 44, 99(1996).
    [67]. E. Olsen, G. Hagen, and S. E. Lindquist, “Dissolution of platinum in methoxy propionitrile containing LiI/I2”, Sol. Energy Mater. Sol. Cells, 63, 267(2000).
    [68]. K. Suzuki, M. Yamamoto, M. Kumagai, and S. Yanagida, “Application of Carbon Nanotubes to Counter Electrodes of Dye-sensitized Solar Cells”, Chem. Lett., 32, 28(2003).
    [69]. H. Lindstrom, A. Holmberg, E. Magnusson, S. E. Lindquist, L. Malmqvist, and A. Hagfeldt, “A New Method for Manufacturing Nanostructured Electrodes on Plastic Substrates”, Nano Lett., 1, 97 (2001).
    [70]. K. Imoto, K. Takatashi, T. Yamaguchi, T. Komura, J. Nakamura, and K. Murata, High-performance carbon counter electrode for dye-sensitized solar cells”, Sol. Energy Mater. Sol. Cells, 79, 459 (2003).
    [71]. T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, and M. Grätzel, “Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes”, J. Electrochem. Soc., 153, a2255(2006).
    [72]. G. Mengoli, M.M. Niusani, D. Pletcher, S. Valcher, J. Appl. Electrochem., 17, 525(1987).
    [73]. H. Tang, A. Kitani, and M. Shiotani, J. Appl. Electrochem., 26, 36(1996).
    [74]. H. Tang, A. Kitani, and M. Shiotani, J. Appl. Electrochem., 26, 45(1996).
    [75]. F. Jonas, and I. Schrader, “Conductive modifications of polymers with polypyrroles and polythiophenes”, Synth. Met., 41, 831(1991).
    [76]. M. Dietrich, J. Heinze, G. Heywang, and F. Jonas, “Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes”, J. Electroanal. Chem., 369, 87(1994).
    [77]. H. Yamato, W. Wernet, “Stability of polypyrrole and poly(3,4-ethylenedioxythiophene) for biosensor application”, J. Electroanal. Chem., 397, 163(1995).
    [78]. Y. Saito, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, “I-/I3- redox reaction behavior on poly(3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells”, J. Photochem. Photobiol. A, 164, 153(2004).
    [79]. D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, and I. Riess, “Nature of Photovoltaic Action in Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 104, 2053(2000).
    [80]. H. G. Agrell, J. Lindgren, A. Hagfeldt, “Coordinative interactions in a dye-sensitized solar cell”, J. Photochem. Photobiol. A, 164, 23(2004).
    [81]. B. Wenger, M. Grätzel, and J. E. Moser, “Rationale for Kinetic Heterogeneity of Ultrafast Light-Induced Electron Transfer from Ru(II) Complex Sensitizers to Nanocrystalline TiO2”, J. Am. Chem. Soc., 127, 12151(2005).
    [82]. G. Redmond, A. O'Keeffe, C. Burgess, C. MacHale, and D. Fitzmaurice, “Spectroscopic Determination of the Flatband Potential of Transparent Nanocrystalline ZnO Films”, J. Phys. Chem., 97, 11081(1993).
    [83]. M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Grätzel, “Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell”, J. Phys. Chem. B, 107, 8981(2003).
    [84]. K. Schwarzburg, F. Willig, “Influence of trap filling on photocurrent transients in polycrystalline TiO2”, Appl. Phys. Lett., 58, 2520(1991).
    [85]. R. Koenenkamp, R. Henninger, and P. Hoyer, “Photocarrier transport in colloidal titanium dioxide films”, J. Phys. Chem., 97, 7328(1993).
    [86]. G. BoschlooA. Goossens, J. Schoonman, “Investigation of the potential distribution in porous nanocrystalline TiO2 electrodes by electrolyte electroreflection”, J. Electroanal. Chem., 428, 25(1997).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE