簡易檢索 / 詳目顯示

研究生: 邱瑋倫
Ciou, We Lun
論文名稱: 量子異常霍爾效應在石墨烯之研究
Quantum Anomalous Hall Effect in Honeycomb Lattice
指導教授: 牟中瑜
Mou, Chung Yu
口試委員: 仲崇厚
張明哲
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 82
中文關鍵詞: 量子異常霍爾效應石墨烯
外文關鍵詞: Quantum Anomalous Hall effect, graphene
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們探討了兩種可能在高溫下產生量子異常霍爾現象的方法,我們考慮的系統是蜂窩晶格。第一個方法是在外加磁場當中,我們會得到霍爾電壓與磁通量的方程式戴爾凡庭方程式(Diophantine equation), 我們還發現系統的霍爾電壓會受到自旋軌道耦合作用力的影響而改變。 第二個方法是考慮延展具有應變(strain)之晶格,系統會給出一個類磁場的效應,發現當應變的周期很大時,在K點會有蘭道能階的出現。在加入自旋軌道耦合作用力與因接觸磁性物質之近鄰效應所產生的磁性,系統可以在室溫產生量子異常霍爾現象。


    In this thesis, we explore two methods that may generate Quantum Anomalous Hall effect in room temperature on a honey comb lattice.

    In the first case, we consider the honeycomb
    lattice in external magnetic fields. It is shown that the distribution of Chern numbers over bands in Hofstadter butterfly obeys the Diophantine
    equation. Furthermore, we find that the distribution of Chern numbers can be altered by including the spin orbital interaction when its strength exceeds some threshold. It is argued that by appropriate using the spin orbit interaction, the Quantum Anomalous Hall in a subband of a honeycomb lattice in a magnetic field can be engineered.

    In the second work, we propose to induce magnetization in the honeycomb lattice by placing the honeycomb
    lattice in proximity to a ferromagnetic material. We find that under strain, pseudo magnetic fields generate flat bands similar to Landau levels in the honeycomb lattice. These flat bands possess non-vanishing Chern number and can exhibit Quantum Anomalous Hall effects in room temperatures.

    front page (I) Abstract in Chinese (IV) Abstract in English (V) list content (VI) list fi gure (VIII) list table (XII) 1 Introduction ........ 1 2 Berry phase and Hall conductance ..4 2.1 Berry phase . . .. . . . . . . ..4 2.1.1 The derivation of the Berry phase . . . 4 2.1.2 Berry curvature . . . . . . . . . . . . 7 2.2 Hall conductance . . . . . . . . . . . . 9 2.2.1 Quantization of Berry phase . . . . . . 9 3 Honeycomb structure in magnetic fi eld ..... 11 3.1 Honeycomb lattice with Tight binding model in external magnetic fi eld ...........11 3.2 Tight binding model and Kane-Mele interaction in magnetic field . ............ 19 3.3 Discussion . . . . . . . 25 4 Honeycomb structure with strained fi eld .. . ..46 4.1 Honeycomb structure with strained fi eld . . . . 46 4.1.1 Zero energy mode . . . . . . . . . . . . . 50 4.2 Honeycomb structure with strained field and Kane-Mele interaction ....... 55 4.3 Honeyconb structure with strained field and Kane-Mele interaction and Rashba interaction . . . . .. . 60 4.4 Discussion . . . . . . . . . . . . . . . 63 5 Conclusion .....80 Bibliography.... 81

    [1] B. Andrei Bernevig, Taylor L. Hughes, and Shou-Cheng Zhang.
    Quantum spin hall eff ect and topological phase transition in hgte quantum wells.
    Science,314(5806):1757, 2006.

    [2] Merab Eliashvili, George I.Japaridze, and George Tsitsishvili.
    The quantum group, harper equation and the structure of bloch eigenstates on a honeycomb lattice.
    arXiv:1203.2579, 2012.

    [3] F. D. M. Haldane. Model for a quantum hall e ffect without landau levels:condensed-matter realization of the "parity anomaly".
    Phys. Rev. Lett,61(18):2015, 1988.

    [4] C. L. Kane and E. J. Mele. Z2 topological order and the quantum spin hall eff ect. Phys. Rev. Lett, 95(14):146802, 2005.

    [5] V. J. Kauppila, F. Aikebaier, and T. T. Heikkila. Flat band superconductivity in strained Dirac materials. Phys. Rev. B, 93(21):214505, 2016.

    [6] MAHITO KOHMOTO. Topological invariant and the quantization of the hall conductance. ANNALS OF PHYSICS, 160:343, 1985.

    [7] Shi-Ting Lee. E ffects of strong impurities on topological states in 2d honeycomb lattice. 2013.

    [8] Chao-Xing Liu, Shou-Cheng Zhang, and Xiao-Liang Qi. The quantum anomalous hall e ffect. Annual Review of Condensed Matter Physics, 7:301, 2016.

    [9] M. Ramezani Masir, D. Moldovan, and F. M. Peeters. Pseudo magnetic fi eld in strained graphene. arXiv:1304.0629, 2013.

    [10] AH Castro Neto, F Guinea, Nuno MR Peres, Kostya S Novoselov, and Andre K Geim. The electronic properties of graphene. Reviews of modern physics,81(1):109, 2009.

    [11] V. M. Pereira and A. H. Castro Neto. Strain engineering of graphene's electronic structure.
    Phys. Rev. Lett, 103(4):046801, 2009.

    [12] Masatoshi Sato, Daijiro Tobe, and Mahito Kohmoto. Hall conductance, topological quantum phase transition, and the diophantine equation on the honeycomb lattice. Phys. Rev. B, 78(23):235322, 2008.

    [13] Shun Qing Shen. Topological Insulators Dirac Equation in Condense Matters.

    [14] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs. Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett, 49(6):405,1982.

    [15] K. v. Klitzing, G. Dorda, and M. Pepper. New method for high-accuracy determination
    of the fi ne-structure constant based on quantized hall resistance.
    Phys. Rev. Lett, 45(6):494, 1980.

    [16] M. Weser, Y. Rehder, K. Horn, M. Sicot, M. Fonin, A. B. Preobrajenski, E. N. Voloshina, E. Goering, and Vu. S. Dedkov. Induced magnetism of carbon atoms at the graphene/ni(111) interface.
    Applied Physics Letters, 96(1):012504, 2010.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE