研究生: |
楊智文 |
---|---|
論文名稱: |
Octahedral Gold Nanocrystal-templated Growth of Au-Pd Core-Shell Heterostructures with Systematic Shape Evolution from Octahedral to Concave Cubic Structures and their Catalytic Activity 以金八面體奈米晶體作為板模成長金鈀核殼結構由八面體進行形狀演繹至凹面立方體以及它們在鈴木耦合反應的催化應用 |
指導教授: |
黃暄益
Huang, Michael H. |
口試委員: |
黃哲勳
林弘萍 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 73 |
中文關鍵詞: | 核殼奈米晶體 、鈀 、形狀控制 、形狀演變 、鈴木偶和反應 、高米勒指數晶面 |
外文關鍵詞: | core shell nanocrystals, palladium, heterostructures, shape controll, shape evolution, Suzuki-Miyaura coupling raction, high-index facets, face-dependent properties |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this study, we have used a seed-mediated growth approach to prepared monodispersive Au–Pd core–shell heterostructures by pre-synthesized 50 nm Au octahedral nanocrystals developed previously. Systematical shape evolution from cubic to truncated cubic, cuboctahedral, truncated octahedral and octahedral structures are achieved by changing the volumes of Au nanooctahedra solutions 0.45 mL to 0.40 mL, 0.35 mL, 0.30 mL and 0.2 mL per 10 ml total volume of reaction mixture. The cetyltrimethylammonium bromide (CTAB) we used, is not only served as capping agent but also changing reduction rate to perform shape controlled synthesis of Au–Pd core–shell heterostructures. CTAB can react with PdCl42– and convert it into the complex–surfactant aggregates [CTA]2[PdBr4]. Transmission electron microscopy (TEM), Powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) have been applied to characterize the surface of crystalline facets. High index facets of unusual concave cubic structure were characterized by high resolution transmission electron microscopy (HR–TEM) and transmission electron microscopy. We can determine Miller indexes of these High index facets by measuring the angle between facets of the projected concave nanocube and {100} face of an ideal cube. Time-dependent UV–vis absorption spectra were used for monitoring the reactions and demonstrating the growth mechanism. It shows that a slow reduction rate of the palladium source for promoting the formation of {111} shell which is manipulated by the amount of the Au cores used.
Suzuki–Miyaura coupling reaction were used for comparing the catalytic activity of concave cubic and octahedral Au–Pd core–shell heterostructures. The concave cubic structures give better performance by half reaction time of octahedra structures. However, both of them show the good recyclability in the catalytic reaction.
(1) Yang, P.; Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A. Na.t Mater. 2007, 6, 692.
(2) Kuo, C. H.; Yang, Y. C.; Gwo, S.; Huang, M. H. J. Am. Chem. Soc. 2011, 133, 1052.
(3) Zhang, M. F.; Shi, S. G.; Meng, J. X.; Wang, X. Q.; Fan, H.; Zhu, Y. C.; Wang, X. Y.; Qian, Y. T. J. Phys. Chem. C 2008, 112, 2825.
(4) Kim, H.; Achermann, M.; Balet, L. P.; Hollingsworth, J. A.; Klimov, V. I. J. Am. Chem. Soc. 2005, 127, 544.
(5) Lu, L. Y.; Zhang, W. T.; Wang, D.; Xu, X. G.; Miao, J.; Jiang, Y. Mater. Lett. 2010, 64, 1732.
(6) Xu, Z. C.; Hou, Y. L.; Sun, S. H. J. Am. Chem. Soc. 2007, 129, 8698.
(7) Huang, M. H.; Lu, C. L.; Prasad, K. S.; Wu, H. L.; Ho, J. A. A. J. Am. Chem. Soc. 2010, 132, 14546.
(8) Tsuji, M.; Matsuo, R.; Jiang, P.; Miyamae, N.; Ueyama, D.; Nishio, M.; Hikino, S.; Kumagae, H.; Kamarudin, K. S. N.; Tang, X. L. Cryst. Growth Des. 2008, 8, 2528.
(9) Cho, E. C.; Camargo, P. H. C.; Xia, Y. N. Adv. Mater. 2010, 22, 744.
(10) Tsuji, M.; Yamaguchi, D.; Matsunaga, M.; Ikedo, K. Cryst. Growth Des. 2011, 11, 1995.
(11) Tsuji, M.; Yamaguchi, D.; Matsunaga, M.; Alam, M. J. Cryst. Growth Des. 2010, 10, 5129.
(12) Lee, Y. W.; Kim, M.; Kim, Z. H.; Han, S. W. J. Am. Chem. Soc. 2009, 131, 17036.
(13) Xie, Z. X.; Fan, F. R.; Liu, D. Y.; Wu, Y. F.; Duan, S.; Jiang, Z. Y.; Tian, Z. Q. J. Am. Chem. Soc. 2008, 130, 6949.
(14) Yu, T.; Kim, D. Y.; Zhang, H.; Xia, Y. N. Angew Chem Int Edit 2011, 50, 2773.
(14) Zhang, J. A.; Langille, M. R.; Personick, M. L.; Zhang, K.; Li, S. Y.; Mirkin, C. A. J. Am. Chem. Soc. 2010, 132, 14012.
(15) Niu, W. X.; Zhang, L.; Xu, G. B. ACS Nano 2010, 4, 1987.
(16) Xiang, Y. J.; Wu, X. C.; Liu, D. F.; Jiang, X. Y.; Chu, W. G.; Li, Z. Y.; Ma, Y.; Zhou, W. Y.; Xie, S. S. Nano Lett. 2006, 6, 2290.
(17) Xiong, Y. J.; Cai, H. G.; Wiley, B. J.; Wang, J. G.; Kim, M. J.; Xia, Y. N. J. Am. Chem. Soc. 2007, 129, 3665.
(18) Fan, F. R.; Attia, A.; Sur, U. K.; Chen, J. B.; Xie, Z. X.; Li, J. F.; Ren, B.; Tian, Z. Q. Cryst. Growth Des. 2009, 9, 2335.
(19) Berhault, G.; Bausach, M.; Bisson, L.; Becerra, L.; Thomazeau, C.; Uzio, D. J. Phys. Chem. C 2007, 111, 5915.
(20) Veisz, B.; Kiraly, Z. Langmuir 2003, 19, 4817.