簡易檢索 / 詳目顯示

研究生: 洪崇祐
Chung Yo Hung
論文名稱: 600V橫向型超接面過壓保護閘流體的設計
The Design of 600V Lateral Super-Junction Thyristor Surge Protective Device
指導教授: 龔正
J.Gong
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2006
畢業學年度: 95
語文別: 中文
論文頁數: 92
中文關鍵詞: 矽控整流器閘流體超級接面導通電阻場板
外文關鍵詞: SCR, Thyristor, Super junction, On-state Resistance, Field plate
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現代微縮到深次微米尺寸的積體電路產品中,其電晶體元件對突波和靜電放電變的非常敏感。矽控整流器(SCR)在突波放電的保護元件中,具有很好的突波放電防護能力,其應用在晶片上當突波放電防護元件也有一段很長的時間。
    一般高壓元件為了承受高電壓通常必須降低漂移區的摻雜濃度與增加其長度,在傳統的閘流體過壓保護元件(TSPDs, Thyristor Surge Protective Devices)也免不了如此的設計,但相對也增加導通電阻 (Ron),使得元件額定電流受到限制。近幾年來,CoolMOSFET採用稱為超接面 (Super-junction) 結構,使其在相同耐壓下導通電阻比一般功率元件低很多。
    本論文中,我們將依據超接面 (Super-junction) 理論與閘流體元件做結合,但在設計方面並非為傳統垂直式的結合,而是改為橫向式結構的方式。使用的模擬方式採用俯視與側視進行元件的電性分析,研究結果顯示調整場板可有效提升元件的崩潰電壓,且在相同的基底濃度時使用超接面結構,因有RESURF效果使電場分佈較為平坦化,可以得到較低導通電阻與較高的崩潰電壓。本文實際規劃出元件光罩,嘗試設計出一個額定電壓為600V的橫向式超接面閘流體過壓保護元件 (Lateral Super-junction TSPD)。


    In the modern deep sub-micron integrated circuit products the transistor is sensitive to surge and electrostatic discharge. Among all the surge protective devices, SCR has a very good protective effect. It also has been applied as one of the surge protective devices for a long time.
    General power devices usually either reduce the doping of the drift region or increase its length for high voltage application. This kind of design is also seen among the traditional Thyristor Surge Protective Devices (TSPDs), which have relatively increased on-resistance (Ron) and limits the rated current. In recent years, the CoolMOSFET uses a Super-junction structure which enables a lower on-resistance than other power devices under the same condition.
    In the thesis, we are trying to combine the super-junction with the thyristor device in a lateral-structured manner rather than a traditional vertical-structured way. In the simulation, we adopt top-view and side-view structures to analyze the electrical properties of the device. It is shown that there is an effective promotion of breakdown voltage when field plate is adjusted. Moreover, with the same concentration and super-junction, there is a smoother electric field distribution, which results in a lower on-resistance and a higher breakdown voltage. Then, according to the above, we can manage to design the device masks, tape it out, and try to fabricate a 600V lateral super-junction TSPD.

    目 錄 摘要...........................................................................................................................Ⅰ 致謝............................................................................................................................Ⅲ 目錄............................................................................................................................Ⅳ 第一章 緒論............................................................................................................1 第二章 功率元件的發展與回顧展........................................................................5 2.1功率元件崩潰之機制..........................................................................................6 2.1.1單一p-n接面的崩潰機制..........................................................................7 2.1.2雙接面(BJT)之崩潰機制............................................................................7 2.2崩潰機制之改善與耐壓提升..............................................................................9 2.2.1降低表面電場原理(RESURF)..............................................................9 2.2.2 舒緩電力線密集 ......................................................................................10 2.3過壓保護元件概觀..............................................................................................11 2.3.1 p-n二極體(Diode).................................................................................11 2.3.2雙載子接面電晶體(Bipolar Junction Transistor)……………………..12 2.3.3氣體放電管(Gas Discharge Tubes)........................................................13 2.3.4壓敏變阻器 ( Metal Oxide Varistors) ........................................................13 2.3.5突波抑制二極體(TVS Diode)...............................................................14 2.3.6閘流體突波保護器(Thyristor Surge Protector)….................................14 第三章 過壓保護閘流體元件之設計.......................................................................23 3.1閘流體的基本原理和過壓保護模式...................................................................23 3.1.1基本架構......................................................................................................23 3.2傳統垂直式閘流體結構.......................................................................................24 3.2.1非對稱閘流體..............................................................................................25 3.3超接面閘流體的操作原理...................................................................................25 3.3.1超接面原理概觀..........................................................................................25 3.3.2 電荷平衡 ...................................................................................................28 3.4高功率超接面閘流體的操作原理 .....................................................................29 3.4.1崩潰電壓(Vbr)之設計............................................................................29 3.4.2觸發電壓(Vtr)與觸發電流(Itr)之設計.............................................29 3.4.3漏電流(IOFF)之設計.............................................................................30 3.4.4持有電壓(VH)與持有電流(IH)之設計............................................30 第四章 元件製作與模擬...........................................................................................36 4.1光罩之佈局 .........................................................................................................36 4.1.1光罩設計與規劃 ........................................................................................37 4.1.2橫向式超接面閘流體之製造步驟..............................................................39 4.2元件模擬 .............................................................................................................41 4.2.1垂直式超接面的模擬 ................................................................................42 4.2.2橫向式超接面閘流體突波保護元件之模擬............................................42 4.2.3 元件整體電流特性之模擬.......................................................................43 4.2.4元件剖面側視之模擬................................................................................43 4.2.4.1 P-base劑量之模擬...........................................................................44 4.2.4.2 N-emitter劑量之模擬......................................................................44 4.2.4.3當存在Poly-gate時之情況.............................................................45 4.2.4.4用Field-plate改善Poly-gate影響..................................................45 4.2.5基底摻雜濃度對崩潰電壓的影響...........................................................46 4.2.6超接面結構之電荷平衡模擬...................................................................47 4.2.7元件俯視之模擬.......................................................................................48 4.2.7.1超接面漂移區長度之影響..............................................................48 4.2.7.2固定p-base改變N-emitter之影響................................................49 4.2.7.3超接面使用與否之比較..................................................................49 第五章 結論 ..........................................................................................................89 參考文獻 ................................................................................................................90

    [1]J.M. Park, “Novel Power Devices for Smart Power Applications”,October. 2004.
    [2]Willy Hermansson,Bo Breitholtz,Lennart C.G. Zdansky, Karin Andersson, Lars F. Heijkenskj¨old, Roland Revs¨ater, and Dag Sigurd, “A MOS- Controlled High-Voltage Thyristor with Low Switching Losses”, IEEE Trans. Electron Devices, VOL.45, NO.4, APRIL 1998.
    [3]D.A. Neamen, “Semiconductor Physics AND DEVICES Basic Principle”, Copyright 2003 by MGH, 3rd
    [4]B. J. Baliga, “Modern Power Devices”, Copyright 1987 by John Wiley & Sons, pp. 233-236
    [5]J. A. Appeals, and H. M. J. Vaes, “High-voltage thin layer devices (RESURF devices)”, IEDM Tech. Dig., pp. 238-239, 1979.
    [6]Min Liu, C. A. T. Salama, P. Schvan and M. King, “A fully resurfed, BiCMOS-compatible, high voltage MOS transistor”, ISPSD 1996, pp. 143-146
    [7]X.B. Chen, P.A. Mawby, K. Board, C.A.T. Salama, “Theory of a novel voltage-sustaining layer for power devices”, Microelectronics journal 29 (1998)
    [8]B.S.Khurana ,T.Sugano ,H.Yanai ,”Thermal Breakdown in Silicon p-n Junction Device” ,IEEE Trans.Elec.Dev.,ED-13,p.763-770,1996.
    [9]N.R.Howard and G.W.Jaohnson,”P+-I-N+ Silicon Diodes at High Forward Current Densities” ,Solid State Electronics ,Vol.8.1965 , pp. 275-284.
    [10]S. M. Sze, “SEMICONDUCTOR DEVICES Physics and Technology”, Copyright 1981 by JWS, 2nd
    [11]Okaya’s surge protective devices – Gas Discharge Tube Arrester Series. (2003, September). Okaya electric America, inc. Retrieved February 24, 2006, from the World Wide Web: http://www.okaya.com
    [12]EMP Engineering and Design Principle, Bell Lab. pp.99-108, 1975.
    [13]Metal oxide varistor. Wikimedia Foundation, Inc. Retrieved February 24, 2006, from the World Wide Web: http://en.wikipedia.org/wiki/Varistor
    [14] P.D.Taylor, Thyristor Design and Realization,Wiley,New York,1993.
    [15]J.J. Ebers, “Four-Terminal p-n-p-n Transistor”Proc.IEEE,40,1361(1952)
    [16]D.A.Neamen“Semiconductor Physics AND DEVICES Basic Principle” 3rd ,2003. pp. 688-689.
    [17] B.J. Baliga, “Power Semiconductor Devices”,PWS. Publishing company, 1995. pp. 266
    [18]T.Fujihira,“Theory of semiconductor superjunction devices”, Jpn. J. Appl. Phys., Vol. 36, pp.6254-6262, 1997
    [19]G. Dobey, M. Marz, J.P. Stengl, H. Strack, J. Tihanyi and H. Weber, “A new generation of high voltage MOSFETs breaks the limit line of sili- con”, IEDM Tech Digest, pp.683-685, 1998.
    [20]L. Lorenz, G. Dobey, A. Knapp and M. Marz, “COOLMOSTM-a new
    milestone in high voltage power MOS”, ISPSD’ 1999, pp.3-10, 1999
    [21]D.J.Coe,”High Voltage Semiconductor Superjunction device”, U.S. Patent4754310, June 28,1998
    [22] T.Fujihira, Y. Onishi, S.Iwamoto,T. Sato, “24 mΩ-cm-2 680V Silicon
    Superjunction MOSFET” ,Power Semiconductor Devices and ICs, 2002.
    Proceedings of the 14th International Symposium, pp241 – 244, 2002
    [23]Min Liu, C. A. T. Salama, P. Schvan and M. King, “A fully resurfed, BiCMOS- compatible , high voltage MOS transistor”, ISPSD '96, pp. 143-146.
    [24]James D.Plummer, Michael Deal, Peter B.Griffin”Silicon VLSI Technology Fundamentals Practice and Modeling” ,Prentice, Hall, Inc.2000.
    [25]AVANT! TSUPREM-4, Two-Dimensional Process Simulation Program,
    Version-2006.6.0.
    [26]AVANT! MEDICI, Two-Dimensional Device Simulation Program,
    Version-2006.6.0.
    [27]Fu-Hsiung Yang , The Design of 600V Vertical Super-Junction TSPDs. NTHU-2006.6.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE