簡易檢索 / 詳目顯示

研究生: 洪士傑
Shi-Jie Hung
論文名稱: CMOS 微靜電力掃描探針之設計與製作
Design and Fabrication of CMOS micromachined cantilevers for Electrostatic Force Microscopy
指導教授: 盧向成
Shiang-Cheng Lu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 86
中文關鍵詞: 靜電力掃描懸臂樑電容式感測CMOS MEMS
外文關鍵詞: Electrostatic Force Microscopy (EFM), Cantilever, Capacitive sensing, CMOS MEMS
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在於製作新型非接觸振動式微探針靜電力掃描,而目標將設定在以微機電技術設計並製造新穎、具高性能的靜電力微探針,並結合CMOS積電電路製程完成整合型感測器晶片。希望藉由直接電路整合降低寄生電容所帶來的訊號衰減及電路噪聲放大。利用不同的靜電力使懸臂樑的自然頻率偏移,期望達到微小化且能精確感測微靜電力的新型感測器。
    本論文將介紹以懸臂樑為結構之CMOS MEMS 微靜電感測器的設計概念、製作流程以及其特性分析與量測結果探討。我們設計以CMOS標準製程製作整合型晶片,在CMOS晶片上以乾蝕刻釋放金屬鋁及介電質二氧化矽兩材料堆疊之懸臂樑。以驅動電極驅動懸臂樑,並於上電極板施加調制訊號源將驅動頻率調制到高頻,以達到降低雜訊的優點。而電容式感電路能直接量測懸臂樑的頻率響應,以便找出結構共振頻率。我們成功的量測到約18KHz的結構共振頻率,並在不同的靜電力下,得到頻率響應的變化與品質因子的變化。
    本研究論文很重要的意義在於設計製造符合標準製程,也因此更有機會結合其他應用而量產應用於市場。


    In this thesis, we present the design, fabrication, and characterization of CMOS micromachined cantilevers for noncontact electrostatic force microscopy (EFM). The cantilevers consisting of multiple metal and dielectric layers are fabricated after completion of the convention CMOS process by dry etching steps. The cantilevers are electrostatically actuated to resonance in the out-of-plane direction. The frequency shift due to different electrostatic force is detected capacitively with on-chip circuitry, in which the modulation technique is used to eliminate the capacitive feedthrough from the driving port, and to lessen the effect of flicker noise. The resonant frequency of the cantilever is measured at about 18 KHz and the quality factor of 12.71 with different electrostatic force.
    The important purpose of this thesis is that the design and fabrication can be realized in a to the convention CMOS process.

    Acknowledgements........................................ii Abstract................................................iii 摘要....................................................iv Contents................................................v List of Figures.........................................vii List of Tables..........................................xi Chapter 1 ...............................................1 1.1 History of Microelectromechanical systems ...........1 1.2 Relative research....................................2 1.3 Research Motivation and Target.......................6 1.4 Literature Review....................................9 Chapter 2 ...............................................11 2.1 Electrostatic Force.................................11 2.2 Parallel-Plate electrostatic actuator on cantilever Design..................................................14 2.2.1 Dynamic Equation..................................14 2.2.2 Design Description................................16 2.3 Spring Constant of cantilever.......................19 2.4 Resonant Behavior of Cantilever.....................25 2.4.1 Resonant Frequency for Simplex Cantilever.........25 2.4.2 Resonant Frequency for Composite Cantilever.......27 2.5 Architecture of the cantilevers for EFM Probe.......28 2.5.1 Pre-amp Circuit Design............................30 2.5.2 Pre-amp Noise.....................................34 2.5.2.1 Resistor Thermal Noise..........................34 2.5.2.2 MOSFETs Thermal Noise...........................35 2.5.2.3 Flicker Noise...................................36 2.5.2.4 Noise of Sensing Circuit........................38 Chapter 3 ...............................................41 3.1 CMOS-MEMS Fabrication...............................41 3.1.1 First step in post-process: Anisotropic Etching...43 3.1.2 Second step in post-process: Isotropic Etching....47 3.1.3 The Layout of the CMOS-EFM Probe..................52 3.2 Mechanical Simulation of the CMOS-MEMS EFM Probe....54 3.2.1 Result of Simulation by using CoventorWare 2005...54 3.3 Simulation of Sensing Circuit.......................62 3.4 Experimental Results................................67 3.4.1 Resonant Frequency of the EFM Probe...............67 3.4.2 Sensing Circuit Measurement.......................69 3.4.3 Measurement of Combined Microstructure and Sensing circuit.................................................72 Chapter 4 ...............................................80 4.1 Conclusion..........................................80 4.2 Future Work.........................................82 Bibliography............................................83

    [1] C. L. Dai, K. Yen and P. Z. Chang, “applied Electrostatic Parallelogram Actuators for Microwave Switches Using the Standard CMOS Process,” J. Micromech. Microeng., Vol. 11, pp.697-702, 2001
    [2] J. S. Han, J. S. Ko, Y. T. Kim and B. M. Kwak, “Parametric Study and Optimization of A Micro-Optical Switch with A Laterally Driven Lectromagnetic Microactuator,” J. Micromech. Microeng., Vol. 12, pp. 939-947, 2002.
    [3] G. Lihui, Y. Mingbin and F. P. Dow, “RF Inductors and Capacitors Integrated on Silicon Chip by CMOS Compatible Cu Interconnect Technology,” Microelectronics Reliability, Vol. 43, pp. 367-370, 2003.
    [4] D. A. Thompson and J. S. Best, “The future of magnetic data storage technology,” IBM J. Res. Develop., vol. 44, no. 3, pp. 311-316, 2000.
    [5] G. Binnig and H. Rohrer, US Patent 4,343,993, 1982.
    [6] G Binning, US Patent 4,724,318, 1988.
    [7] G. Binnig et., “7×7 reconstruction on Si(111) resolved in real space,” Phys. Rev. Lett., vol. 50, no. 2, pp. 120-123, 1983.
    [8] C.F. Quate, “Method and means of data storage using tunneling current data readout,” US Patent 4,575,822, 1983.
    [9] R.T. El-sayed and L.R. carley, “Performance analysis of beyond 100 Gb/in2 MFM-based MEMS actuated mass storage devices,” IEEE Trans. Magnetics, vol. 38, no. 5, Pt. 1, pp. 1892-1894, 2002.
    [10] L.R. Carley et al., “Single-chip computer with microelectromechanical system-based magnetic memory,” J. Appl. Phys., vol. 87, no. 9, pp. 6680-6685, 2000.
    [11] E. Betzig et al., Appl. Phys. Lett., vol. 61, no. 2, pp. 42, 1992.
    [12] H.J. Mamin et al., “High-density data storage based on the atomic force microscope,” Proc. IEEE, vol. 87, pp. 1014-1027, 1999.
    [13] P. Vettiger et al., “The Millipede – nanotechnology entering data storage,” IEEE Trans. Nanotechnol., vol. 1, pp. 39-55, Jan. 2002.
    [14] D Weller, A Moser, “Thermal Effect Limits in Ultrahigh-Density Magnetic Recording”, IEEE Transactions on, 1999.
    [15] M. Madou, Fundamentals of Microfabrication, pp. 406-410, CRC press, Boca Raton, Florida, 1997
    [16] G. B. Hocker, D. Youngner, E. Deutsch, A. Volpicelli, S. Senturia, M. Butler, M. Sinclair, T. Plowman, and A. J. Ricco, “The polychromator: a programmable MEMS diffraction grating for synthetic spectra,” Technical Digest. Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, pp. 89-92, 2000.
    [17] C. Marxer, C. Thio, M. A. Gretillat, N. F. de Rooij, R. Battig, O. Anthamatten, B. Valk, and P. Vogel, “Vertical mirrors fabricated by deep reactive ion etching for fiber-optic switch applications,” J. of Microelectromechanical Systems, vol. 6, pp. 277-285, Sept. 1997.
    [18] J. Buhler, J. Funk, J. G. Korvink, F. P. Steiner, P. M. Sarro, and H. Baltes, “Electrostatic aluminum micromirrors using double-pass metallization,” J. of Microelectromechanical Systems, vol. 6, pp. 126-135, June. 1997.
    [19] L. J. Hornbeck, “Deformable-mirror spatial light modulators,” SPIE Critical Review Series, vol. 1150, pp. 86-102, 1989.
    [20] P. M. Zavracky, S. Majumber, and E. McGruer, “Micromechanical switches fabricated using nickel surface micromachining,” J. of Microelectromechanical Systems, vol. 6, pp. 3-9, Mar. 1997.
    [21] E. S. Hung, “Positioning, control, and dynamics of electrostatic actuators for use in optical systems,” Ph.D. dissertation, Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1998.
    [22] K. Sato and M. Shikida, “Electrostatic film actuator with a large vertical displacement,” Micro Electro Mechanical System’92, Travemunde, Germany, pp. 1-5, 1992.
    [23] X. T. Wu, R. A. Brown, S. Mathews, and K. R. Farmer, “Extending the travel range of electrostatic micro-mirrors using insulator coated electrodes,” in Proc. IEEE/IEOS int. conf. Opt. MEMS 2000, Kauai, HI, pp. 151-152, 2000.
    [24] C. Cabuz, “Dielectric related effects in micromachined electrostatic actuators,” Conf. on Electrical Insulation and Dielectric Phenomena, pp. 327-332, 1999.
    [25] R. Jebens, W. Trimmer, and J. Walker, “Microactuators for aligning optical fibers,” Sensors and Actuators A (Physical), vol. 2, pp. 65-73, 1989.
    [26] R. Legtenberg, J. Gilbert, S. D. Senturia, and M. Elwenspoek, “Electrostatic curved electrode actuators,” J. of Microelectromechanical Systems, vol. 6, no. 3, pp. 257-265, 1997.
    [27] E. S. Hung and S. D. Senturia, “Extending the travel range of analog-tuned electrostatic actuators,” J. of Microelectromechanical Systems, vol. 8, no. 4, pp. 497-505, Dec. 1999.
    [28] D. M. Burns and V. M. Bright, “Nonlinear flexures for stable deflection of an electrostatically actuated micromirror,” Proceedings of SPIE – the Internatonal Society for Optical Engineering, vol. 3226, pp. 125-136, 1997.
    [29] E. K. Chan and R. W. Dutton, “Electrostatic micromechanical actuator with extended range of travel,” J. of Microelectromechanical Systems, vol. 9, no. 3, pp. 321-328, Sept. 2000.
    [30] J. I. Seeger and S. B. Crary, “Stabilization of electrostatically actuated mechanical devices,” International Conference on Solid-State Sensors and Actuators (Transducers ‘97), Chicago, IL, USA, pp. 1133-1136, June 16-19, 1997.
    [31] L. M. Castańer and S. D. Senturia, “Speed-energy optimization of electrostatic actuators based on pull-in,” J. of Microelectromechanical Systems, vol. 8, no. 3, pp. 290-298, Sept. 1999.
    [32] R. Nadal-Guardia, R. Aigner, W. Nessler, M. Handtmann, and L. M. Castańer, “Control positioning of torsional electrostatic actuators by current driving,” The Third International Euroconference on Advanced Semiconductor Devices and Microsystems, Sinolenice Castle, Slovakia, pp. 91-94, 2000.
    [33] R. Nadal-Guardia, A. Dehé, R. Aigner, and L. M. Castańer, “Current drive methods to extend the range of travel of electrostatic microactuators beyond the voltage pull-in point,” J. of Microelectromechanical Systems, vol. 11, no. 3, pp. 255-263, June 2002.
    [34] R. Nadal-guardia, A. Dehé, R. Aigner, and L. M. Castańer, “New current drive method to extend the stable operation range of electrostatic actuators: experimental verification,” in Proc. Int. Conf. on Solid State Sensors and Actuators (Transducers ’01), Munich, pp. 760-763, June 2001.
    [35] J. Pons-Nin, A. Rodríguez, and L. M. Castańer, “Voltage and pull-in time in current drive of electrostatic actuators,” J. of Microelectromechanical Systems, vol. 11, no. 3, pp. 196-205, June 2002.
    [36] L. M. Castańer, J. Pons-Nin, R. Nadal-Guardia, and A. Rodríguez, “Analysis of the extended operation range of electrostatic actuators by current pulse drive,” Sensors and Actuators A (Physical), vol. 90, pp. 181-190, May 2001.
    [37] J. I. Seeger and B. E. Boser, “Dynamics and control of parallel-plate actuators beyond the electrostatic instability,” in Proc. Transducers ’99, Sendai, Japan, pp. 474-477, June 7-10, 1999.
    [38] P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Durig, B. Gotsmann, W. Haberle, M. A. Lantz, H. E. Rothuizen, R. Stutz, G. K. Binnig, “ The “millipede”-nano-technology entering data storage,” IEEE Trans. on Nanotechnology, vol. 1, no. 1, pp. 39-55, Mar. 2002.
    [39] J. F. Alfaro and G. K. Fedder, “Actuation for probe-based data storage,” International Conference on Modeling and Simulation of Microsystems, Puerto Rico, pp. 202-205, April 21-25, 2002.
    [40] H. H. Woodson and J. R. Melcher, Electromechanical Dynamics, Part I: Discrete Systems, chapter 3, John Wiley & Sons, New York, 1968.
    [41] G. K. Fedder, “Simulation of Microelectromechanical Systems,” Ph.D. dissertation, Dept. of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, California, 1994.
    [42] W. Weaver, S. P. Timoshenko, D. H. Young, Vibration Problems in Engineering, Wiley, New York, 1990.
    [43] R. D. Blevin, Formulas for natural frequencies and mode shapes, Van Rostrand Reinhold, New York, 1979.
    [44] J. M. Gere, S. P. Timoshenko, Mechanics of Materials, 3rd ed., PWS-Kent, Boston, 1990.
    [45] Y. Tsividis, Operation and Modeling of the MOS Transistor, Second Ed., Boston: McGraw-Hill, 1999.
    [46] A. A. Abidi, “High-Frequency Noise Measurements on FETs with Small Dimensions,” IEEE Trans. Electron Devices, vol. 33, pp. 1801-1805, Nov. 1986.
    [47] J. Wu, “Sensing and control electronics for low-mass low-capacitance MEMS accelerometers,” Ph.D. dissertation, Dept. of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, May, 2002

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE