研究生: |
林宛渝 Lin, Wan-Yu |
---|---|
論文名稱: |
COVID-19期間未拋補利率平價理論與外匯不確定性之研究 Uncovered Interest Rate Parity And Exchange Rate Uncertainty During COVID-19 Pandemic |
指導教授: |
張焯然
Chang, Jow-Ran |
口試委員: |
蔡璧徽
Tsai, Bi-Huei 陳政琦 Chen, Cheng-Chi |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 財務金融 Master Program of Finance and Banking |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 35 |
中文關鍵詞: | COVID-19 、未拋補利率平價理論 、不確定性 、零利率下限 |
外文關鍵詞: | COVID-19, UIRP, Uncertainty, ZLB |
相關次數: | 點閱:73 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
西元2020年初,全球因受到COVID-19 (下稱新冠) 疫情的影響,陸續實施鎖國、封城等限制,導致各國經濟嚴重受創,全球經濟不確定性急遽上升,也使得外匯市場劇烈波動。外匯市場中,不僅美元兌新台幣突破27元大關,歐元兌美元匯率也出現近20年來罕見的1:1情況,英鎊匯率也下跌至近乎與美元持平水準。過去學術上不乏對總體經濟不確定性之研究,卻鮮少單獨探討外匯市場不確定性之研究。因此,本研究基於未拋補利率平價理論 (Uncovered Interest Rate Parity,UIRP) 的基礎上,透過迴歸分析 (Regression Analysis)、滾動迴歸 (Rolling Regression)、虛擬變數 (Dummy Variable) 等方法,探討未拋補利率平價等式在不同條件下的係數變化、顯著程度,並將殘差值結合機率密度函數 (Probability Density Function,PDF)概念,繪製樣本期間各貨幣對的外匯不確定性。首先觀察金融海嘯後十三年 (2010年至2022年)以及新冠疫情爆發後近三年 (2020年至2022年),美元兌新台幣 (USD/TWD)、歐元兌美元 (EUR/USD)、英鎊兌美元 (GBP/USD) 三種貨幣對未拋補利率平價等式的係數變化及顯著程度,再將新冠疫情期間依據央行貨幣政策方向以及外匯不確定性高低分別拆解為零利率下限 (Zero Lower Bound,ZLB) 時期、強勢升息時期以及高度不確定時期、低度不確定時期兩組進行探討。本研究實證結果顯示,新冠疫情期間的美元兌新台幣、歐元兌美元兩貨幣對間利率差可以解釋兩國匯率變動量,並且解釋能力顯著;新冠疫情期間零利率及強勢升息期間的各樣本貨幣對間利率差對匯率變動量的解釋能力不佳;新冠疫情期間低不確定性時期中,美元兌新台幣以及歐元兌美元的解釋能力顯著,由此歸納,在新冠疫情期間的低不確定性時期中,美元兌新台幣以及歐元兌美元,兩貨幣對之間的利率差可以解釋匯率升貼水變動量,並且解釋能力顯著。
Since the beginning of 2020, many countries across the world were put on lockdown in combat with the coronavirus outbreak. These countries suffered a historical economic slump, while global economic uncertainty rapidly arose, and the foreign exchange market remains choppy. In the foreign exchange market, the NT dollar hit a high of NT$27 against the US dollar. Rarely enough, the US dollar and the Euro were equal for the first time in 20 years. Moreover, the pound was expected to reach parity with the US dollar during the pandemic. While many methodologies and strategies for constructing macroeconomic uncertainty indices are available, discussing foreign exchange uncertainty is unusual. Therefore, this paper is based on Uncovered Interest Rate Parity (UIRP) and utilizes Regression Analysis, Rolling Regression, Dummy Variable, etc., to investigate how the coefficient of UIRP changes and whether it is statistically significant under different conditions. Additionally, we combine the concept of Probability Density Function (PDF) and the residual of the UIRP regression to illustrate the foreign exchange uncertainty between three currency pairs during the sample period. First, we will divide the sample period into two sub-samples - one being the period from the end of the financial crisis until now (2010-2022), the other being the duration since the COVID-19 outbreak until now (2020-2022). We will examine how the coefficient of UIRP changes and whether it is statistically significant between the USD/TWD, EUR/USD, and GBP/USD currency pairs. Furthermore, we aim to delve deeper into the effect of COVID-19. Therefore, based on monetary policy and the level of foreign exchange uncertainty, we differentiate between the Zero Lower Bound (ZLB), periods of strong lift rates, high exchange uncertainty, and low exchange uncertainty. The outcomes of this paper show that USD/TWD and EUR/USD are statistically significant during COVID-19 pandemic, non-statistically significant during the Zero Lower Bound and strong lift rates period of COVID-19, and statistically significant during the low exchange uncertainty period of COVID-19. Our empirical results are highly suggestive, indicating that the difference in interest rates between USD/TWD and EUR/USD can explain the relative change in currency foreign exchange rates when the exchange uncertainty is low during the COVID-19 pandemic.
1.Baker, S. R., Bloom, N., & Davis, S. J. (2012). Policy uncertainty: a new indicator (No. 362). Centre for Economic Performance, LSE.
2.Baker, S. R., Bloom, N., & Davis, S. J. (2016). Measuring economic policy uncertainty. The Quarterly Journal of Economics, 131(4), 1593-1636.
3.Baker, S. B., Bloom, N., Davis, S. J., & Renault, T. (2020). Economic uncertainty measures derived from Twitter. Department of Economics, Stanford University.
4.Bloom, N. (2009). The impact of uncertainty shocks. Econometrica,
77(3), 623-685.
5.Fama, E. F. (1984). Forward and spot exchange rates. Journal of monetary economics, 14(3), 319-338.
6.Farhi, E., & Gabaix, X. (2016). Rare disasters and exchange rates. The Quarterly Journal of Economics, 131(1), 1-52.
7.Ismailov, A., & Rossi, B. (2018). Uncertainty and deviations from uncovered interest rate parity. Journal of International Money and Finance, 88, 242-259.
8.Jurado, K., Ludvigson, S. C., & Ng, S. (2015). Measuring uncertainty. American Economic Review, 105(3), 1177-1216.
9.Keynes, J. M. (1923). A tract on monetary reform. Cosimo Classics.
10.Rossi, B., & Sekhposyan, T. (2015). Macroeconomic uncertainty indices based on nowcast and forecast error distributions. American Economic Review, 105(5), 650-655.
11.Scotti, C. (2016). Surprise and uncertainty indexes: Real-time aggregation of real-activity macro-surprises. Journal of Monetary Economics, 82, 1-19.
12.Segal, G., Shaliastovich, I., & Yaron, A. (2015). Good and bad uncertainty: Macroeconomic and financial market implications.
Journal of Financial Economics, 117(2), 369-397.