研究生: |
鄭錦隆 Chin-Lung Cheng |
---|---|
論文名稱: |
鉿金屬氧化物閘介電層金氧半元件之電性與可靠度特性研究 Electrical and Reliability Characteristics of MOS Devices with HfOxNy as Gate Dielectrics |
指導教授: |
張廖貴術
Kuei-Shu Chang-Liao |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 118 |
中文關鍵詞: | 鉿金屬氧化物 、金氧半元件 、電性 、可靠度特性 、高介電係數 、化學分析電子儀 、穿隧漏電流 、界面陷阱 |
外文關鍵詞: | HfOxNy, MOS device, electrical property, reliability characteristics, High-k, XPS, tunneling leakage current, interface trap |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於MOS元件二氧化矽閘介電層厚度縮小化,促使電晶體的性能得以提昇。然而,隨著二氧化矽閘介電層厚度的減少,使得漏電流快速的增加,導致元件應用在IC的嚴重問題,因此運用高介電係數閘介電層來解決漏電流問題是金氧半元件製程中的關鍵課題。目前,在各種高介電係數閘極介電層中,以金屬鉿(Hafnium)為基底的氧化物被高度的受重視。本研究發現,在介電層與矽界面置入高量的氮可以改善元件的電與可靠度特性,這是由於高量的氮可降低界面的應變及缺陷產生率。相反地,在本體介電層中含太多氮反而會有電荷補捉現象發生。再者,根據化學分析電子儀(XPS)的分析,氮氧化鉿(HfOxNy)沉積在矽(111)晶格面上會比沉積在矽(100)晶格面上,在界面會有較多的氮原子及較低的氧原子,且擁有較佳的可靠度。在氮氧化鉿(HfOxNy)介電層的漏電流機制方面,研究發現在低溫及高電場是由穿隧(tunneling)電流例如場發射(field emission)支配,在高溫低電場發現是蕭基(Schottky emission)支配,而在高溫及高電場反而是 Frenkel-Poole emission。同時利用在不同溫度的漏電流量測,可以決定陷阱能量的深度。在減低界面缺陷方面,可以利用高溫退火處理矽基板來提昇元件的電特性及降低界面陷阱(interface trap)情形。高溫熱退火處理後,可以降低靠近矽表面的缺陷,一旦界面的缺陷降低,則有利高介電係數閘極介電層沉積後的元件特性,這是由於利用沉積的方法來形成高介電係數閘極介電層,其界面缺陷常常造成高漏電流。同時研究發現利用化學乾式清洗矽晶表面可以使得蝕刻表面的平整性改善及降低表面的污染,進一步的改善元件的漏電流、閘介電層崩潰時間、介面粗糙度及理想因子特性。
The continuous scaling down of gate silicon dioxide thickness in metal-oxide-semiconductor devices achieves continued improvement in integrated circuit performance. However, the accompanying high leakage current of ultrathin silicon oxide is a significant problem for IC application. A high-k gate dielectric with a large physical thickness and an identical equivalent oxide thickness has recently been proposed to solve this leakage issue. Among various high-k gate dielectrics, Hf-based gate dielectrics have received much attention. Properties with better reliability can be obtained by higher nitrogen pile-up at the dielectric/Si interfaces. More nitrogen incorporated into gate dielectric bulk can result in more significant charge trapping. A greater amount of nitrogen incorporated into the dielectric/Si interface can result in less strain near the interface and a smaller defect generation rate. In addition, the XPS results show that the O 1s peak for the Si(111)-substrate sample is lower than that for the Si(100)-substrate sample while the N 1s peak is higher for the former than for the latter. Crystalline retardation was found to be significant for the HfOxNy film deposited onto the Si(111)-substrate as characterized by XRD. According to the investigations upon SILC and Tbd, the reliability characteristics of high-k gate dielectrics deposited on a Si(111)-substrate are better than those deposited on a Si(100)-substrate. The current-conduction mechanism of the HfOxNy film at low-temperature range and high-field, the low-electrical field and high-temperature, the high-electrical field and high-temperature is dominated by tunneling, Schottky emission and Frenkel-Poole emission, respectively. The trap energy level involved in FP conduction was estimated. A low defect (denuded zone) at Si surface was formed by a high-temperature annealing. Our results reveal that HfOxNy demonstrates a significant improvement on the electrical properties of MOS devices owing to its low amount of the [Oi] and the crystal-originated particles defects and better surface quality at the IL/Si interface. Moreover, after plasma etching, a chemical dry clean treatment was applied to achieve a smoother surface and to reduce carbon and fluorine residues contamination. Based on the investigations upon leakage current, stress induced leakage current, time to breakdown, interface roughness, and ideality factor, chemical dry clean treatment has shown to be an effective process to improve electrical and reliability characteristics of high-k MOS devices.
[1] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics: current status and materials properties considerations,” J. Appl. Phys., Vol. 89, pp. 5243-5275, 2001.
[2] K. Yamamoto, S. Hayashi, M. Kubota, and M. Niwa, “Effect of Hf metal predeposition on the properties of sputtered HfO2/Hf stacked gate dielectrics,” Appl. Phys. Lett., Vol. 81, pp. 2053-2055, 2002.
[3] C. S. Kang, H.-J. Cho, R. Choi, Y. H. Kim, C. Y. Kang, S. J. Rhee, C. Choi, M. S. Akbar, and J. C. Lee, “The electrical and material characterization of hafnium oxynitride gate dielectric with TaN-gate electrode,” IEEE Transactions on Electron Devices, Vol. 51, pp.220-227, 2004.
[4] X. Wang, J. Liu, F. Zhu, N. Yamada, and D. L. Kwong, “A simple approach to fabrication of high-quality HfSiON gate dielectric with improved nMOSFET performances,” IEEE Transactions on Electron Devices, Vol. 51, pp.1798-1804, 2004.
[5] X. Yu, C. Zhu, M. F. Li, A. Chin, M. B. Yu, A. Y. Du, and D. L. Kwong, “Mobility enhancement in TaN metal-gate MOSFETs using tantalum incorporated HfO2 gate dielectric,” IEEE Electron Device Lett. Vol. 25, pp.501-503, 2004.
[6] C. S. Park, B. J. Cho, and D. L. Kwong, “MOS characteristics of synthesized HfAlON-HfO2 stack using AlN-HfO2,” IEEE Electron Device Lett. Vol. 25, pp.619-621, 2004.
[7] A. Paskaleva, A. J. Bauer, M. Lemberger, and S. Zurcher, “Different current conduction mechanisms through thin high-k HfxTiySizO films due to the varying Hf to Ti ratio,” J. Appl. Phys., Vol. 95, pp.5583-5590, 2004.
[8] C. Gerardi and M. Melanotte, S. Lombardo, M. Alessandri, B. Crivelli, and R. Zonca, “Effects of nitridation by nitric oxide on the leakage current of thin SiO2 gate oxides,” J. Appl. Phys. Vol. 87, pp.498-501, 2000.
[9] H. Fukada, M. Yasuda, T. Iwabuchi and S. Ohno, “Novel N2O-oxynitridation technology for forming highly reliable EEPROM tunnel oxide films,” IEEE Electron Device Lett. Vol. 12, pp.587-589, 1991.
[10] C. S. Kang, H.-J. Cho, K. Onishi, R. Choi, Y. H. Kim, R. Nieh, J. Han, S. Krishnan, A. Shahriar, and J. C. Lee, “Nitrogen concentration effects and performance improvement of MOSFETs using thermally stable HfOxNy gate dielectrics,” in IEDM tech. Dig., 2002, pp.865-868.
[11] P. D. Kirsch, C. S. Kang, J. Lozano, J. C. Lee, and J. G. Ekerdt, “Electrical and spectroscopic comparison of HfO2/Si interfaces on nitrided and un-nitrided Si(100),” J. of Appl. Phys., Vol. 91, pp.4353-4363, 2002.
[12] H. Y. Yu, J. F. Kang, C. Ren, J. D. Chen, Y. T. Hou, C. Shen, M. F. Li, D. S. H. Chan, K. L. Bera, C. H. Tung, and D. L. Kwong, “Robust high-quality HfN-HfO2 gate stack for advanced MOS devices applications,” IEEE Electron Device Lett., Vol. 25, pp.70-72, 2004.
[13] K. S. Chang-Liao and H. C. Lai, “Correlation between nitrogen concentration profile and infrared spectroscopy in silicon dioxide,” Appl. Phys. Lett., Vol. 72, pp.2280-2282, 1998.
[14] S. Mudanai, F. Li, S. B. Samavedam, P. J. Tobin, C. S. Kang, R. Nieh, J. C. Lee, L. F. Register, and S. K. Banerjee, “Interfacial defects states in HfO2 and ZrO2 nMOS capacitors,” IEEE Electron Device Lett., vol. 23, pp. 728-730, 2002.
[15] D. K. Schroder, “Semiconductor material and device characterization,” John wiley & Sons, pp. 337-338, 1998.
[16] P. O. Hahn and M. Henzler, “The Si/SiO2 interface: Correlation of atomic structure and electrical properties,” J. Vac. Sci. Technol. A, vol. 2, pp. 574-583, 1984.
[17] T. Yamanka, S. Feng, H. Lin, J. Snyder, and C. R. Helms, “Correlation between inversion layer mobility and surface roughness measured by AFM,” IEEE Electron Device Lett., vol. 17, pp. 178-180, 1996.
[18] H. Nishino, N. Hayasaka, K. Horioka, J. Shiozawa, S. Nadahara, N. Shooda, Y. Akama, A. Sakai, and H. Okano, “Smoothing of the Si surface using CF4/O2 down-flow etching,” J. Appl. Phys., Vol. 74, pp. 1349-1353, 1993.
[19] N. Aoto, M. Nakamori, S. Yamasaki, and H. Hada, “Native oxides on Si surface of deep-submicro contact-hole bottoms,” J. Appl. Phys., Vol. 77, pp.3899-3907, 1995.
[20] C. Chaneliere, J. L. Autran, and R. A. B. Devine, “Conduction mechanisms in Ta2O5/SiO2 and Ta2O5/Si3N4 stacked structure on Si,” J. Appl. Phys., Vol. 86, pp.480-486, 1999.
[21] C. K. Maiti, S. Maikap, S. Chatterjee, S. K. Nandi, and S. K. Samanta, “Hafnium oxide gate dielectric for strained-Si1-xGex, “ Solid State Electronics, Vol. 47, pp.1995-2000, 2003.
[22] S. S. Gong, M. E. Burnham, N. D. Theodore, and D. K. Schroder, “Evaluation of Qbd for electrons tunneling from the Si/SiO2 interface compared to electron tunneling from the poly-Si/SiO2 interface,” IEEE Transactions on Electron Devices, Vol. 40, pp.1251-1257, 1993.
[23] A. Benninghoven, F. G. Rudenauer and H. W. Werner, “Secondary Ion Mass Spectrometry,” (Wiley, New York, 1987) p.1227.
[24] D. Briggs and M. P. Seah, “Practical surface analysis by Auger and X-ray photoelectron spectroscopy,” John Wiley & Sons, New York (1994).
[25] N. Kato, “X-ray diffraction,” McGraw-Hill (1974).
[26] P. R. Griffiths and J. A. de Haseth, “Fourier transform infrared spectrometry,” John Wiley, New York (1986).
[27] J. R. Ferraro and K. Krishnan, “Practical Fourier transform infrared spectroscopy,” Academic Press, New York (1990).
[28] R. E. Lee, “Scanning electron microscopy and X-ray microanalysis,” PTR Prentice Hall, New Jersey (1993).
[29] R. Wiesendanger, “Scanning probe microscopy and spectroscopy,” Cambridge University Press (1994).
[30] J. R. Hauser and K. Ahmed, “Characterization of ultrathin oxides using electrical C-V and I-V measurement,” Char. Metrol. ULSI Technol., pp. 235-230, 1998.
[31] H. Fujioka, S. Kamohara, Y. C. King, and K. Yang, “QMCV simulator,” online available http://www-device.eecs.berkeley.edu/qmcv/index.shtml
[32] J. H. Stathis and D. J. DiMaria, “Reliability projection for ultra-thin oxides at low voltage,” IEDM Tech. Dig. (1998) pp.167-170, 1998.
[33] Q. D. M. Khosru, A. Nakajima, T. Yoshimoto, and S. Yokoyama, “Reliable extraction of the energy distribution of Si/SiO2 interface traps in ultrathin metal-oxide-semiconductor structures,” Appl. Phys. Lett., vol. 80, pp. 3952-3954, 2002.
[34] C. S. Kang, H. J. Cho, K. Onishi, R. Choi, R. Nieh, S. Krishnan, and J. C. Lee, “Improved thermal stability and device performance of ultra-thin (EOT<10Å) gate dielectric MOSFETs by using hafnium oxynitride (HfOxNy),” Symposium on VLSI Tec. Dig., pp.146-147, 2002.
[35] M. R. Visokay, J. J. Chambers, A. L. P. Rotondaro, A. Shanware, and L. Colombo, “Application of HfSiON as a gate dielectric material,” Appl. Phys. Lett., Vol. 80, pp.3183-3185, 2002.
[36] J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vac. Sci. & Technol. B Vol. 18, pp.1785-1791, 2000.
[37] B. H. Lee, R. Choi, L. Kang, S. Gopalan, R. Nieh, K. Onishi, Y. Jeon, W. J. Qi, C. Kang and J. C. Lee, “Characteristics of TaN gate MOSFET with ultrathin hafnium oxide (8 Å-12 Å),” IEDM Tech. Dig. (2000) pp.39-42.
[38] R. P. Vasquez and A. Madhukar, “Strain-dependent defect formation kinetics and a correlation between flatband voltage and nitrogen distribution in thermally nitrided SiOxNy/Si structures,” Appl. Phys. Lett. Vol. 47, pp.998-1000, 1985.
[39] D. J. DiMaria and E. Cartier, “Mechanism for stress-induced leakage currents in thin silicon dioxide films,” J. Appl. Phys. Vol. 78, pp.3883-3894, 1995.
[40] I. C. Chen, S. E. Holland and C. Hu, “Electrical breakdown in thin gate and tunneling oxides,” IEEE Trans. Electron Devices Vol. 32, pp.413-422, 1985.
[41] E. P. Gusev and C. P. D’Emic, “Charge detrapping in HfO2 high- gate dielectric stacks,” Appl. Phys. Lett. Vol. 83, pp.5223-5225, 2003.
[42] J. H. Stathis and D. J. DiMaria, “Reliability projection for ultra-thin oxides at low voltage,” IEDM Tech. Dig. (1998) pp.167-170, 1998.
[43] S. M. Sze, “Physics of Semiconductor Devices,” John wiley & Sons, pp.402-407, 1985.
[44] M. Houssa, R. Degraeve, P. W. Mertens, M. M. Heyns, J. S. Jeon, A. Halliyal, and B. Ogle, “Electrical properties of thin SiON/Ta2O5 gate dielectric stacks,” J. Appl. Phys., Vol. 86, pp.6462-6467, 1999.
[45] G. A. Hames, J. J. Wortman, S. E. Beck and D. A. Bohling, “Degradation of rapid thermal oxides due to the presence of nitrogen in the oxidation ambient,” Appl. Phys. Lett., Vol. 64, pp.980-982, 1993.
[46] R. Rofan and C. Hu, “Stress-induced oxide leakage,” IEEE Electron Device Lett., Vol. 12, pp.632-634, 1991
[47] Z. Xu, M. Houssa, R. Carter, M. Naili, S. D. Gendt, and M. Heyns, “Constant voltage stress induced degradation in HfO2/SiO2 gate dielectric stacks,” J. Appl. Phys., Vol. 91, pp.10127-10129, 2002.
[48] P. J. McWhorter and P. S. Winokur, “Simple technique for separating the effects of interface traps and trapped-oxide charge in metal-oxide-semiconductor transistors,” Appl. Phys. Lett., Vol. 48, pp.133-135, 1986.
[49] E. H. Nicollian and J. R. Brews, “MOS Physics and Technologys,” Wiley & New York, pp.325-328, 1982.
[50] Mohammad Shahariar Akbar, S. Gopalan, H.-J. Cho, K. Onishi, R. Choi, R. Nieh, C. S. Kang, Y. H. Kim, J. Han, S. Krishnan and Jack C. Lee, “High-performance TaN/HfSiON/Si metal-oxide-semiconductor structures prepared by NH3 post-deposition anneal,” Appl. Phys. Lett. Vol. 82, pp.1757-1759, 2003.
[51] L. Kang, B. H. Lee, W. J. Qi, Y. Jeon, R. Nich, S. Gopalan, K. Onishi, and J. C. Lee, “Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric,” IEEE Electron Device Lett., Vol. 21, pp.181-183, 2000.
[52] J. M. Hergenrother, G. D. Wilk, T. Nigam, F. P. Klemens, D. Monroe, P. J. Silverman, T. W. Sorsch, B. Busch, M. L. Green, M. R. Baker, T. Boone, M. K. Bude, N. A. Ciampa, F. J. Ferry, A. T. Fiory, S. J. Hillenius, D. C. Jacobson, R. W. Johnson, P. Kalavade, R. C. Keller, A. A. King, A. Kornblit, H. W. Krautter, J. T. C. Lee, W. M. Mansfield, J. F. Miner, M. D. Morris, S.-H. Oh, J. M. Rosamilia, B. J. Sapjeta, K. Short, K. Steiner, D. A. Muller, P. M. Voyles, J. L. Grazul, E. J. Shero, M. E. Givens, C. Pomarede, M. Mazanec, C. Werkhoven, “50 nm vertical replacement-gate (VRG) nMOSFETs with ALD HfO2 and Al2O3 gate dielectrics,” IEDM Tech. Dig., pp.51-54, 2001.
[53] J. H. Lee, J. P. Kim, J. H. Lee, Y. Kim, H. Jung, N. Lee, H. Kang, K. Suh, M. Jeong, K. Hyun, H. Baik, Y. S. Chung, X. Liu, S. Ramanathan, T. Seidel, J. Winkler, A. Londergan, H. Y. Kim, J. M. Ha, and N. K. Lee, “Mass production worthy HfO2-Al2O3 laminate capacitor technology using Hf liquid precursor for sub-100 nm DRAMs,” IEDM Tech. Dig., pp.221-224, 2002
[54] H. S. Momose, T. Ohguro, S. Nakamura, Y. Toyoshima, H. Ishiuchi and H. Iwai, “Ultrathin gate oxide CMOS on (111) surface-oriented Si substrate,” IEEE Trans. Electron Devices, Vol. 49, pp.1597-1605, 2002.
[55] T. Hattori, H. Nohira and K. Takahashi, “The initial growth steps of ultrathin gate oxides,” Microelectron. Eng., Vol. 48, pp.17-24, 1999.
[56] T. Hattori, T. Aiba, E. Iijima, Y. Okube, H. Nohira, N. Tate and M. Katayama, “Initial stage of oxidation of hydrogen-terminated silicon surfaces,” Appl. Surf. Sci., Vol. 104/105, pp.323-328, 1996.
[57] H. Watanabe, K. Fujita and M. Ichikawa, “Atomic-step observation at buried SiO2/Si(111) interfaces by scanning reflection electron microscopy,” Surf. Sci., Vol. 385, pp.L952-L957, 1997.
[58] K. Fujita, H. Watanabe and M. Ichikawa, “Scanning tunneling microscopy study on the surface and interface of Si(111)/SiO2 structures,” J. Appl. Phys. Vol. 83, pp.3638-3642, 1998.
[59] C. L. Cheng, K. S. Chang-Liao, P. L. Wang and T. K. Wang, “Physical and Reliability Characteristics of Metal-Oxide-Semiconductor Devices with HfOxNy Gate Dielectrics on Different Surface-Oriented Substrates,” Jpn. J. Appl. Phys., Vol. 43, pp.L599-L601, 2004.
[60] K. Onishi, C. S. Kang, R. Choi, H. J. Cho, Y. H. Kim, S. Krishnan, M. S. Akbar and J. C. Lee, “Performance of polysilicon gate HfO2 MOSFETs on [100] and [111] silicon substrates,” IEEE Electron Device Lett., Vol. 24, pp.254-256, 2003.
[61] G. Kissinger, J. Vanhellemont, G. Obermeier, and J. Esfandyari, “Denuded zone formation by conventional and rapid thermal anneals,” Mater. Sci. Engineering B, vol.73, pp. 106-110, 2000.
[62] S. Mudanai, F. Li, S. B. Samavedam, P. J. Tobin, C. S. Kang, R. Nieh, J. C. Lee, L. F. Register, and S. K. Banerjee, “Interfacial defects states in HfO2 and ZrO2 nMOS capacitors,” IEEE Electron Device Lett., vol. 23, pp. 728-730, 2002.
[63] P. O. Hahn and M. Henzler, “The Si/SiO2 interface: Correlation of atomic structure and electrical properties,” J. Vac. Sci. Technol. A, vol. 2, pp. 574-583, 1984.
[64] T. Yamanka, S. Feng, H. Lin, J. Snyder, and C. R. Helms, “Correlation between inversion layer mobility and surface roughness measured by AFM,” IEEE Electron Device Lett., vol. 17, pp. 178-180, 1996.
[65] D. Graf, U. Lambert, M. Brohl, A. Ehlert, R. Wahlich, and P. Wagner, “Comparison of high temperature annealed Czochralski silicon wafers and epitaxial wafers,” Mater. Sci. Engineering B, vol.36, pp. 50-54, 1996.
[66] Q. D. M. Khosru, A. Nakajima, T. Yoshimoto, and S. Yokoyama, “Reliable extraction of the energy distribution of Si/SiO2 interface traps in ultrathin metal-oxide-semiconductor structures,” Appl. Phys. Lett., vol. 80, pp. 3952-3954, 2002.
[67] J. Maserjian and N. Zamani, “Observation of positively charged state generation near the Si/SiO2 interface during Fowler–Nordheim tunneling,” J. Vac. Sci. & Technol. Vol. 20, pp.743-746, 1982.
[68] H. J. Cho, C. S. Kang, K. Onishi, S. Gopalan, R. Nieh, R. Choi, E. Dharmarajan and J. C. Lee, “Novel nitrogen profile engineering for improved TaN/HfO2/Si MOSFET performance,” Tech. Dig. Int. Electron Devices Meet., p.655-658, 2001.
[69] R. Nieh, S. Krishnan, H. J. Cho, C. S. Kang, S. Gopalan, K. Onishi, R. Choi and J. C. Lee, “Comparison between ultra-thin ZrO2 and ZrOxNy gate dielectrics in TaN or poly-gated NMOSCAP and NMOSFET devices,” in Symp. VLSI Tech. Dig. pp.186-187, 2002.
[70] P. J. Tzeng, Y. Y. Chang and K. S. Chang-Liao, “Plasma charging damage on MOS devices with gate insulator of high-dielectric constant material,” IEEE Electron Device Lett., Vol. 22, pp.527-529, 2001.
[71] A. Borghesi, M. Geddo, B. Pivac, A. Sassella, and A. Stella, “Quantitative determination of high-temperature oxygen microprecipitates in Czochralski silicon by micro-Fourier transform infrared spectroscopy,” Appl. Phys. Lett. Vol. 58, pp.2099-2101, 1991.
[72] K. S. Chang-Liao, N. K. Yi, and J. G. Huang, “Neutron intrinsic gettering on electrical property of gate oxynitride in metal-oxide-Si capacitor,” Appl. Phys. Lett., vol. 76, pp. 2770-2772, 2000.
[73] W. K. Chim, T. H. Ng, B. H. Koh, W. K. Choi, J. X. Zheng, C. H. Tung, and A. Y. Du, “Interfacial and bulk properties of zirconium dioxide as a gate dielectric in metal–insulator–semiconductor structures and current transport mechanisms,” J. Appl. Phys. Vol. 93, pp.4788-4793, 2003.
[74] M. Specht M. Stadele, S. Jakschik, and U. Schroder, “Transport mechanisms in atomic-layer-deposited Al2O3 dielectrics,” Appl. Phys. Lett. Vol. 84, pp.3076-3078, 2004.
[75] S. W. Huang and J. G. Hwu, “Electrical characterization and process control of cost-effective high-k aluminum oxide gate dielectrics prepared by anodization followed by furnace annealing,” IEEE Transactions on Electron Devices, Vol. 50, pp.1658-1664, 2003.
[76] Y. Yanase, H. Nishihata, T. Ochiai, and H. Tsuya, “Atomic force microscope observation of the change in shape and subsequent disappearance of “crystal-originated particles” after hydrogen-atmosphere thermal annealing,” Jpn. J. Appl. Phys., vol. 37, Part 1, pp. 1-4, 1998.
[77] S. Banerjee, B. Shen, I. Chen, J. Bohiman, G. Brown, and R. Doering, “Conduction mechanisms in sputtered Ta2O5 on Si with an interfacial SiO2 layer,” J. Appl. Phys., vol. 65, pp. 1140-1146, 1989.
[78] S. J. Lee, C. H. Lee, C. H. Choi, and D. L. Kwong, “Time-dependent dielectric breakdown in poly-Si CVD HfO2 gate stack,” in Symp 40th Annual International Reliability Phys., 2002, pp. 409-414.
[79] Y. H. Kim, K. Onishi, C. S. Kang, H. J. Cho, R. Nieh, S. Gopalan, R. Choi, J. Han, S. Kriahnan, and J. C. Lee, “Area dependence of TDDB characteristics for HfO2 gate dielectrics,” IEEE Electron Device Lett., vol. 23, pp. 594-596, 2002.
[80] R. Degraeve, B. Kaczer, M. Houssa, G. Groeseneken, M. Heyns, J. S. Jeon, and A. Halliyal, “Analysis of high voltage TDDB measurements on Ta2O5-SiO2 stack,” in IEDM Tech. Dig., 1999, pp. 327-330.
[81] M. V. Fischetti, D. A. Neumayer, and E. A. Cartier, “Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with high-k insulator: The role of remote phonon scattering,” J. Appl. Phys., vol. 90, pp. 4587-4608, 2001.
[82] K. Torii, Y. Shimamoto, S. Saito, O. Tonomura, M. Hiratani, Y. Manabe, M. Caymax, and J. W. Maes, “The mechanism of mobility degradation in MISFETs with Al2O3 gate dielectric,” in Symp. VLSI Tech. Dig., 2002, pp. 188-189.
[83] W. J. Zhu, T. P. Ma, S. Zafer, and T. Tamagawa, “ Charge trapping in ultrathin hafnium oxide, ” IEEE Electron Device Lett., vol. 23, pp. 597-599, 2002.
[84] H. Ishii, S. Shiratake, K. Oka, K. Motonami, T. Koyama, and J. Izumitani, “Direct observation of crystal-originated particles on czochralski-grown silicon wafer surface and effect on gate oxide reliability,” Jpn. J. Appl. Phys., vol. 35, Part 2, pp. L1385-L1387, 1996.
[85] H. S. Kim, S. A. Campbell, and D. C. Gilmer, “Charge trapping and degradation in high-permittivity TiO2 dielectric films,” IEEE Electron Device Lett., Vol. 18, pp.465-467, 1997.
[86] K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater. Res., Vol. 15, p.2757, Nov. 1996.
[87] N. Miyata, M. Ichikawa, T. Nabatame, T. Horikawa and A. Toriumi, “Thermal stability of a thin HfO2/ultrathin SiO2/Si structure: interfacial Si oxidation and silicidation,” Jpn. J. Appl. Phys., Vol. 42, pp.138-140, 2003.
[88] M. S. Joo, B. J. Cho, C. C. Yeo, N. Wu, H. Yu, C. Zhu, M. F. Li, D. L. Kwong and N. Balasubramanian, “Dependence of chemical composition ratio on electrical properties of HfO2-Al2O3 gate dielectric,” Jpn. J. Appl. Phys., Vol. 42, pp.220-222, 2003.
[89] H. Kang, Y. Roh, G. Bae, D. Jung, and C. W. Yang, “Characteristics of HfO2/HfSixOy film as an alternative gate dielectric in metal-oxide-semiconductor devices,” J. Vac. Sci. Technol. B, Vol. 20, pp.1360-1363, 2002.
[90] H. Nishino, N. Hayasaka, K. Horioka, J. Shiozawa, S. Nadahara, N. Shooda, Y. Akama, A. Sakai, and H. Okano, “Smoothing of the Si surface using CF4/O2 down-flow etching,” J. Appl. Phys., Vol. 74, pp. 1349-1353, 1993.
[91] N. Aoto, M. Nakamori, S. Yamasaki, and H. Hada, “Native oxides on Si surface of deep-submicro contact-hole bottoms,” J. Appl. Phys., Vol. 77, pp.3899-3907, 1995.
[92] S. Norasetthehul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, D. P. Norton, S. J. Pearton, “Etch characteristics of HfO2 films on Si substrates,” Appl. Sur. Sci., Vol. 187, pp.75-81, 2002.
[93] Stanley Wolf, “Silicon Processing for the VLSI Era:Deep-Submicron Process Technology,” Lattice Press: Sunset Beach, California; 2002.
[94] J. Amano, K. Nauka, M. P. Scott, J. E. Turner, and R. Tsai, “Junction leakage in titanium self-aligned silicide devices,” Appl. Phys. Lett., Vol. 49, pp.737-739, 1986
[95] T. Nakahata, K. Yamamoto, J. Tanimura, T. Inagaki, T. Furukawa, S. Maruno, Y. Tokuda, A. Miyamoto, S. Satoh, and H. Kiyama, “Low thermal budget surface cleaning after dry etching for selective silicon epitaxial growth,” J. Crystal Growth Vol. 226, pp. 443-450, 2001.