研究生: |
邱柏渝 |
---|---|
論文名稱: |
短電子脈衝束長量測用之射頻偏轉腔設計 Design of an RF Deflecting Structure for Short Electron Bunch Measurement |
指導教授: |
柳克強
劉偉強 |
口試委員: |
柳克強
劉偉強 陳仕宏 李安平 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 先進光源科技學位學程 Degree Program of Science and Technology of Synchrotron Light Source |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 偏轉腔 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
射頻偏轉腔自1960初被提出後,在加速器領域持續的被廣泛使用。對於束長量測,射頻偏轉腔可取得電子束完整縱向外觀、具高解析度、可實現單脈衝量測等特性使其在各大研究中心SLAC、CERN、DESY等不斷被改進及應用於其他實驗,如六維相空間診斷、自由電子雷射X光量測、粒子分離器、產生超短電子脈衝等,現在已成了加速器裝置束流診斷的重要工具。和加速器不同,大部分射頻偏轉腔的工作模態為〖TM〗_11,此模態在近軸處存在橫向磁力,對處於不同微波相位的帶電粒子作用不同的勞倫茲力,藉此使粒子偏離中心軸,達到束長量測的目的。
本研究中,我們以SPARC、SLAC、THU等的駐波結構射頻偏轉腔設計做為參考,依國家同步輻射研究中心所提出VUV/THz FEL 自由電子雷射設施構想的需求,設計一可對光陰極注射器進行束流診斷的2998 MHz、駐波形式、運作在π模的三腔偏轉腔,希望在電子能量為數個MeV下可達到sub-ps的解析長度。
我們從研究偏轉腔的結構和微波特性開始,計算出束流診斷所需的腔體形式、腔體數量和解析度,接著使用CST Microwave Studio作為模擬三維偏轉腔微波特性的工具,利用Eigenmode solver 和 Frequency solver調整腔體及耦合孔尺寸,使每個腔體有相同大小的磁場和工作於正確的頻率。另外使用CST Particle Studio 模擬電子束經偏轉腔的變化。最後製作原型,將其量測結果與理論及模擬比較。模擬的結果顯示,以同步輻射光陰極注射器的電子參數為例,設計出的腔體在輸入功率為1 MW下可以達到約500 fs的解析長度。
[1] N.Y. Huang, et al, “Preliminary injector design for VUV FEL facility at NSRRC,” 2014 FEL winter school, Hsinchu, Taiwan.
[2] L. H. Yu, A. Doyuran, L. DiMauro, W. S. Graves, E. D. Johnson, R. Heese, et al., "Ultraviolet high-gain harmonic-generation free-electron laser at BNL," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 528, pp. 436-442, 2004.
[3] M. Labat, M. Bellaveglia, M. Bougeard, B. Carré, F. Ciocci, E. Chiadroni, et al., "High-Gain Harmonic-Generation Free-Electron Laser Seeded by Harmonics Generated in Gas," Physical Review Letters, vol. 107, 2011.
[4] L. Yu, L. DiMauro, A. Doyuran, W. Graves, E. Johnson, R. Heese, et al., "First Ultraviolet High-Gain Harmonic-Generation Free-Electron Laser," Physical Review Letters, vol. 91, 2003.
[5] T. Lefevre, ”Short bunch length measurement”, CAS intermediate level, Daresbury, 2007.
[6] Gero Kube, “Particle beam diagnostics and control”, Fermi school on laser plasma acceleration, Varenna, June 20th~June 25th , 2011.
[7] V. Schlott, “Lecture on Femto-Second Diagnostics”, CAS on Bema Diagnostics, Dourdan, May 28th~June 6th , 2008.
[8] SHI Jiaru, “Studies of RF deflecting /crag cavities for beam manipulation and diagnostics”, Ph.D. dissertation, Univ. of Tsinghua, Nuclear Science and Technology Dept., Beijing, 2009.
[9] G.A. Loew, O.H. Altenmueller, “Design and applications of RF deflecting structures at SLAC”, PUB-135, August 1965.
[10] Helm R H, Loew G A, Miller R H, et al. Recent Developments at SLAC. Technical Report SLAC-PUB-420, Stanford Linear Accelerator Center, 1968. Presented at 1968 Proton Linear Accelerator Conf., BNL, May 1968.
[11] T. H. Fieguth et al., “RF separated beams at SLAC”, IEEE Transactions on Nuclear Science, Vol.NS-22, NO3, 1975.
[12] Panofsky W K H. A Mass Sensitive Deflector for High Energy Particles. Technical report, High Energy Physics Laboratory, Stanford University, 1956.
[13] J. R. Shi, H. B. Chen, C. X. Tang, W. H. Huang, Y. C. Du, S. X. Zheng, et al., "RF deflecting cavity for bunch length measurement in Tsinghua Thomson scattering X-ray source," Chinese Physics C, vol. 33, pp. 161-164, Jun 2009.
[14] David Alesini, “RF deflector-based sub-ps beam diagnostics: application to FELs and advanced accelerators”, LNF-INFN, Frascati, Rome, ERICE, October 9th ~October 14th , 2005.
[15] Y. Ding, A. Brachmann, F. J. Decker, D. Dowell, P. Emma, J. Frisch, et al., "Measurements and Simulations of Ultralow Emittance and Ultrashort Electron Beams in the Linac Coherent Light Source," Physical Review Letters, vol. 102, Jun 2009.
[16] J. Shi, H. Chen, C. Tang, S. Zheng, W. Huang, J. G. Power, et al., "A 3-cell deflecting RF cavity for emittance exchange experiment at ANL," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 598, pp. 388-393, 2009.
[17] A. Zholents, P. Heimann, M. Zolotorev, and J. Byrd, "Generation of subpicosecond X-ray pulses using RF orbit deflection," Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, vol. 425, pp. 385-389, Apr 1999.
[18] D. Alesini, G. Di Pirro, L. Ficcadenti, A. Mostacci, L. Palumbo, J. Rosenzweig, et al., "RF deflector design and measurements for the longitudinal and transverse phase space characterization at SPARC," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 568, pp. 488-502, 2006.
[19] C. Vaccarezza et al., “An RF deflector design for 6D phase space characterization of the SPARC beam”, Proceedings of EPAC 2004, Lucerne, Switzerland.
[20] E. Chiadroni et al., “High energy emittance measurement at SPARC”, Proceedings of DIPAC09, Basel, Switzerland.
[21] J.-R. Shi, H.-B. Chen, C.-X. Tang, W.-H. Huang, Y.-C. Du, S.-X. Zheng, et al., "RF deflecting cavity design for bunch length measurement of photoinjector at Tsinghua University," Chinese Physics C, vol. 32, pp. 837-841, Oct 2008.
[22] SHI Jiaru, “Studies of RF deflecting /crag cavities for beam manipulation and diagnostics”, Ph.D. dissertation, Univ. of Tsinghua, Nuclear Science and Technology Dept., Beijing, 2009.
[23] Y. Ding, C. Behrens, P. Emma, J. Frisch, Z. Huang, H. Loos, et al., "Femtosecond x-ray pulse temporal characterization in free-electron lasers using a transverse deflector," Physical Review Special Topics-Accelerators and Beams, vol. 14, p. 6, Dec 2011.
[24] Y. Ding et al., “Commissioning of the X-band transverse deflector for femtosecond electron/X-ray pulse lengrh measurements at LCLS”, Proceedings of IPAC2013, Shanghai, China.
[25] P. Krejcik et al., “Enguneering design of the new LCLS X-band transverse deflecting cavity”, Proceedings of IBIC2013, Oxford, UK.
[26] John Byrd, “RF cavity higher order mode measurements”, Microwave measurements Laboratory, USPAS and CCAST, Beijing, China, 1998.
[27] W. K. H. Panofsky and W. A. Wenzel, "Some consinderations concerning the transverse deflection of charged particles in radio-frequency fields," Review of Scientific Instruments, vol. 27, pp. 967-967, 1956.
[28] SHU Jiaru et al., ” Impedance simulation and waveguide damping study of a superconducting deflecting cavity for ALS at LBNL”, Proceedings of SRF2007, Peking Univ., Beijing, China.
[29] J. Billen, “PARMELA”, LA-UR-96-1835, 1996.
[30] www.cst.de
[31] www.ansoft.com
[32] E. L. Ginzton, "Microwave Q measurements in the presence of coupling losses," Microwave Theory and Techniques, IRE Transactions on, vol. 6, pp. 383-389, 1958.