簡易檢索 / 詳目顯示

研究生: 朱永翔
Yung-Hsiang Chu
論文名稱: 用microarray data來建構癌症細胞週期動態基因調控網路
Construction of Dynamic Gene Regulatory Network of Hela Cell Cycle via Microarray Data
指導教授: 陳博現
Bor-Sen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 36
中文關鍵詞: 基因調控
外文關鍵詞: Hela cell
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞分裂週期是探索癌症細胞運作機制的重要線索,所以研究癌症細胞的基因調控網路是依個相當重要的研究主題。由於目前癌症的生物基因晶片基因表現資料已經可以取得,所以我們希望藉由這些基因表現資料來建立一個動態模型模擬癌症細胞分裂週期的基因調控網路,並藉由動態基因調控網路更加了解癌症細胞分裂週期的調控機制所不為人知的一面。完成上述動態模型及建構基因調控網路之後,我們會更進一步的討論關鍵的調控指在網路中的調控能力以及在調控網路中所扮演的角色。
    藉者生物晶片的基因表現資料建立動態模型,我們必須先靠相關系數的檢測找出被調控的目標基因上游的調控基因,再藉由上游調控基因建立主要的基因調控方程式。找出調控方程式建立好動態模型之後,我們就可以在目標基因及上游調控基因之間描繪出基因間的調控網路,然後再把上由調控基因設定為目標基因,繼續往上有檢測調控基因並建立起調控方程式。
    如此一來,我們將可以在每個目標基因及上游調控基因之間建立龐大且複雜的癌症細胞分裂週期基因調控網路,並更加了解內部機制。
    最後,靠者複雜的動態調控網路,我們可以討論網路中的每個調控基因的調控能力之強弱以及在癌症細胞分裂基因調控網路中是否扮演重要的角色。


    Cell cycle is an important clue to unravel the mechanism of cancer cells. Therefore, it is important topic to study the gene regulatory network of cancer cell cycle. Recently, expression profiles of cDNA microarray data of cancer cell cycle are available. Therefore, it is more appealing to construct a dynamic model for gene regulatory network of cancer cell cycle to gain more insight into the infrastructure of gene regulatory mechanism of cancer cell via microarray data. Then, based on the dynamic model, we will discuss the regulatory abilities of regulatory genes to find their roles in the network.
    A dynamic model is proposed for the gene regulatory network of cancer cell cycle. Based on the gene regulatory dynamic model and the cDNA expression profiles of the target gene, the regulatory function from upstream regulators is detected by a correlation algorithm to trace back their upstream regulatory genes.  Then we can construct the regulatory network between target genes and their upstream regulatory genes by identifying the chemical kinetic parameters of regulatory pathways via the cDNA expression profiles of the target genes and their upstream regulatory genes. Then these upstream regulatory genes are considered as target genes.  We trace back their upstream regulatory genes. Iteratively, we will construct the whole dynamic gene regulatory network of cancer cell cycle which is useful to gain more insight into the whole mechanism of cancer cell. Finally, based on the dynamic regulatory network, we analyze the regulatory abilities of regulatory genes to discuss their roles in the network of cancer cell cycle.

    Contents Abstract ………………………………………………………………………….. i Acknowledgements ……………………………………………………………... iii Contents ………………………………………………………………………… iv List of Table……………………………………….……………………………... vi List of Figures ………………………………….…………………….……….... vii 1. Introduction …………………………………………………………………....… 1 2. System Model and Network Identification …………….………………….…….. 6 2.1 Dynamic signaling regulatory model ………………………………………... 6 2.2 Extraction of the transcriptional regulatory function ……………….. 8 2.3 Iterative algorithm for constructing gene regulatory network ……………. ….9 3. Methods…………………………………………………………………………..13 3.1 Maximum likelihood Estimation of , , and …………………..13 3.2 Parameter Estimation of and .........................................................15 4. Results ………………………………………………………………………..… 17 4.1 Data processing and analysis ……………………………………………….. 17 4.2 Inference of the regulatory pathway................................................................ 19 5. Discussion …………………………………………………………………….... 21 Bibliography ……………………………………………………………………. 24

    Bibliography

    [1] Badawi RA, Birns J, Watson T, Kalra L. (2005) Growth factors and their relationship to neoplastic and paraneoplastic disease. Eur J Intern Med. 16(2):83-94.
    [2] Valsesia-Wittmann S, Magdeleine M, Dupasquier S, Garin E, Jallas AC, Combaret V, Krause A, Leissner P, Puisieux A. (2004) Oncogenic cooperation between H-Twist and N-Myc overrides failsafe programs in cancer cells. Cancer Cell. 6(6):625-30.
    [3] M. L. Whitfield, G. Sherlock, A. Saldanha, J. I. Murray, C. A. Ball, K. E. Alezander, J. C. Matese, C. M. Perou, M. M. Hurt, P. O. Brown and D. Botstein. (2002) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell 13, 1977–2000.
    [4] Perambakam S, Li B, Preisler H. Rush Cancer Institute, Rush Presbyterian-St. (2001) Quantitation of interferon regulatory factor transcripts in patients with acute myeloid leukemia. Luke's Medical Center, Chicago, Illinois, USA. Cancer Invest. 2001; 19(4):346-51.
    [5] Cho, R.J., Campbell, M.J., Winzeler, E.A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T.G., Gabrielian, A.E., Landsman, D., Lockhart, D.J., et al. (1998) A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell. 2, 65-73.
    [6] Stillman, B. (1996). Cell cycle control of DNA replication. Science 274, 1659-1664
    [7] Nurse, P. (2000). A long twentieth century of the cell cycle and beyond. Cell 100, 71-78
    [8] Shah, J.V., and Cleveland, D.W. (2000). Waiting for anaphase: Mad2 and the spindle assembly checkpoint. Cell 103, 997-1000
    [9] Hinchcliffe, E.H., and Sluder, G. (2001). "It takes two to tango": understanding how centrosome duplication is regulated throughout the cell cycle. Genes Dev. 15, 1167-1181
    [10] Wittmann, T., Hyman, A., and Desai, A. (2001). The spindle: a dynamic assembly of microtubules and motors. Nat. Cell Biol. 3, E28-E34
    [11] Alter O, Brown PO, Botstein D. (2003) Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms. Proc Natl Acad Sci U S A. Mar 18; 100(6): 3351-6.
    [12] Sherlock, G., et al. (2001) The Stanford Microarray Database. Nucleic Acids Res. 29, 152-155
    [13] Cho, R.J., Huang, M., Campbell, M.J., Dong, H., Steinmetz, L., Sapinoso, L., Hampton, G., Elledge, S.J., Davis, R.W., and Lockhart, D.J. (2001). Transcriptional regulation and function during the human cell cycle. Nat. Genet. 27, 48-54
    [14] Bracken AP, Ciro M, Cocito A, Helin K. (2004) E2F target genes: unraveling the biology. Trends Biochem Sci. Aug;29(8):409-17.
    [15] Stanelle, J. et al. (2002) Gene expression changes in response to E2F1 activation. Nucleic Acids Res. 30, 1859–1867
    [16] Mu¨ ller, H. et al. (2001) E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev. 15, 267–285
    [17] Ren, B. et al. (2002) E2F integrates cell cycle progression with DNA repair, replication, and G2/M checkpoints. Genes Dev. 16, 245–256
    [18] Polager, S. et al. (2002) E2Fs up-regulate expression of genes involved in DNA replication, DNA repair and mitosis. Oncogene 21, 437–446
    [19] Ishida, S. et al. (2001) Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol. Cell. Biol. 21, 4684–4699
    [20] Nevins, J.R. (2001) The Rb/E2F pathway and cancer. Hum. Mol. Genet. 10, 699–703
    [21] Muller, H. and Helin, K. (2000) The E2F transcription factors: key regulators of cell proliferation. Biochim. Biophys. Acta 1470, M1–12
    [22] Cam H, Dynlacht BD. (2003) Emerging roles for E2F: beyond the G1/S transition and DNA replication. Cancer Cell. 3(4):311-6.
    [23] Ivey-Hoyle M, Conroy R, Huber HE, Goodhart PJ, Oliff A, Heimbrook DC. (1993) Cloning and characterization of E2F-2, a novel protein with the biochemical properties of transcription factor E2F. Mol Cell Biol. 13(12):7802-12.
    [24] Lang SE, McMahon SB, Cole MD, Hearing P. (2001) E2F transcriptional activation requires TRRAP and GCN5 cofactors. J Biol Chem. 276(35):32627-34.
    [25] Ortega, S. et al. (2002) Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim. Biophys. Acta 1602, 73–87
    [26] Sherr, C.J. and Roberts, J.M. (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512
    [27] Di Stefano, L. et al. (2003) E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes. EMBO J. 22, 6289–6298
    [28] Stott, F.J. et al. (1998) The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 17, 5001–5014
    [29] Wu W, Fan YH, Kemp BL, Walsh G, Mao L. (1998) Overexpression of cdc25A and cdc25B is frequent in primary non-small cell lung cancer but is not associated with overexpression of c-myc. Cancer Res. 15;58(18):4082-5.
    [30] Robles LD, Frost AR, Davila M, Hutson AD, Grizzle WE, Chakrabarti R. (2002) Down-regulation of Cdc6, a cell cycle regulatory gene, in prostate cancer. J Biol Chem. 277(28):25431-8.
    [31] Johansson, R. (1993) System modeling and identification, Page 113-119, Prentice-Hall.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE