簡易檢索 / 詳目顯示

研究生: 湯哲宇
Tang, Tse Yu
論文名稱: 功能性奈米粒子之製備與擔載於載藥微球之應用
Study of Functional Nanoparticle – Microsphere Construct for Biomedical Application
指導教授: 蔡德豪
Tsai, De Hao
口試委員: 何榮銘
Ho, Rong Ming
呂世源
Lu, Shih Yuan
薛涵宇
Hsueh, Han Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 82
中文關鍵詞: 微球接枝乳化膠體穩定性
外文關鍵詞: fluid dynamics, simulation, thiol, polyethylene glycol
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討功能性奈米金粒子結合載藥微球之平台,我們發展奈米金粒子製備技術以提供光熱治療之功能,並進一步與微球結合,如此可應用於癌症腫瘤之治療。因此研究上分為發展奈米金粒子製備與分析技術以及結合微球輸送技術兩個部分來進行。
    在奈米金粒子製備之技術上,我們著重於發展將其分散到水相,並製備成膠體溶液之技術。本研究採用水與二氯甲烷進行水包油乳化的方式,二氯甲烷在此反應主要作為溶解聚苯乙烯基板的溶劑,然因其會導致單螺旋二十四面體金奈米粒子相互聚集,因此,本研究添加硫醇基化聚乙二醇poly(ethylene glycol)methyl ether thiol(SH-PEG)作為保護劑防止金聚集,運用水包油乳化接枝技術,控制聚苯乙烯基板溶解與硫醇基化聚乙二醇接枝在金上的競爭反應,以避免單螺旋二十四面體金奈米粒子相互聚集,並即時進行水相分散。在分析反應機制上,運用程溫式電噴灑氣相奈米粒子流動分析儀(TP-ES-DMA)技術測定單螺旋二十四面體金奈米粒子之氣動粒徑,並以升溫方式,將單螺旋二十四面體金奈米粒子之形狀熔融為球型,測定於不同長晶時間下之粒子體積變化,藉以鑑定單螺旋二十四面體金奈米粒子之長晶程序,並輔以室溫下之單螺旋二十四面體金奈米粒子氣動粒徑數據,比較不同長晶時間下球型與單螺旋二十四面體之氣動粒徑差異,結果顯示其形狀因子為1.30±0.11,最後藉由調整不同成核密度,發現於高成核密度下,形狀因子不變,而氣動粒徑與體積均會減少。
    在發展結合載藥微球之技術上,我們開發微球於流場中之模擬技術,以研究其流動行為;載藥微球現今已應用於多種治療,然而,時至今日,依然無法確認藥物微球是否能準確地輸送至目標。因此,若能以不侵害人體的方式先行評估,勢必對載藥微球在醫療上的應用有莫大的幫助。在發展微球模擬方法上,我們運用流場模擬的方式模擬在肝動脈血管中擔載金奈米粒子微球的流動情形,並設以不同變因,包括藥物微球密度、藥物微球大小、藥物微球表面摩擦係數、血液流動速度、血液黏度、血管管徑以及血管的分支,了解載藥微球在血液之中的流動情形,並輔以假體實驗,修正模擬結果與模型實驗的差異程度,並提高模擬程序之可信度,未來期望能將此技術應用於評估擔載不同表面密度之奈米金粒子微球系統中。


    We reported a systematic study of functional nanoparticle – microsphere construct for cancer treatment. The research had two section, one is controlled synthesis of colloidal gold nano-gyroids, the other one is computer modeling of controlled microsphere release.
    We reported a systematic study of synthesis and characterize of gold nano-gyroid colloid. A nanoporous polymer(polystyrene-b-poly(L-lactide) block copolymer thin film, followed by the hydrolysis of the poly(L-lactide) blocks) with gyroid nanochannels was used as a template for Au nano-gyroid. A new oil-in-water emulsion-based approach was developed for the preparation of Au nano-gyroid in the form of colloid. Dichloromethane was used as the organic solvent (oil) for the purpose of polystyrene dissolution, and thiolated polyethylene glycol was employed as a surfactant to stabilize the oil-in-water emulsion and also the Au nano-gyroid in the water phase. Particle size and morphology of Au nano-gyroid were characterized by temperature-programmed electrospray-differential mobility analysis. The result shows that both the mobility size and volume of Au nano-gyroid increased with the deposition time of Au. In contrast, the mobility size and volume of Au nano-gyroid decreased with the concentration of nuclei. The shape factor of Au nano-gyroid was found to be independent on the concentration of nuclei and growth time (≈1.30±0.11), indicating the isotropic growth of Au nano-gyroid. This work describes a prototype methodology to fabricate and characterize morphology-controlled metal nanoparticle with a high colloidal stability.
    In this study, we also developed the computational fluid dynamic simulation model for microsphere-based drug delivery. The results show the material properties of microsphere (density, size, friction constant), fluid properties (viscosity, flow velocity), and dimension of blood vessel (diameter, length, branch) were critical to the efficacy in delivery of microsphere in the blood stream. By throttling the gastroduodenal artery(GDA), the calculated efficiency improved presumably due to the reduction of “dead zone” in the flow field. The calculated result model experiment was conducted showed a reasonable agreement with the experimental data. The prototype study proposed here provide a useful strategy for Au nanoparticles – microsphere construct in biomedical application.

    摘要 I Abstract III 圖目錄 V 圖目錄 VII 第一章 緒論 1 1.1 奈米金粒子於生物醫學上的應用 1 1.2 形態控制以形成高效能奈米金材料 4 1.3 高分子形狀控制模板製作功能奈米材料 8 1.4 微球在醫學上的應用 10 1.5 金奈米粒子與微球之結合與應用 13 1.6 研究目的與方法 16 第二章 實驗方法 18 2.1 實驗藥品 18 2.2 螺旋二十四面體金奈米粒子膠體製備 20 2.3 微球模擬方法與假體實驗驗證 21 2.4 材料分析技術 26 2.4.1 掃描式電子顯微鏡(SEM) 26 2.4.2 穿透式電子顯微鏡(TEM) 27 2.4.3 程溫式電噴灑式氣相奈米粒子流動分析儀(TP-ES-DMA) 27 第三章 結果與討論 31 3.1 水相膠體奈米螺旋二十四面體金粒子之製備與鑑定 31 3.1.1 金粒子在有機相和水相中的分散性與溶解作用力 31 3.1.2 乳化分子接枝技術對聚苯乙烯基板溶解與奈米金粒子之穩定性探討….. 38 3.1.3 TP-ES-DMA對單螺旋二十四面體金奈米粒子之分析技術探討………… 43 3.1.4 長晶時間對金粒子體積與形態之影響 46 3.1.5 成核密度對金粒子氣動粒徑以及形狀因子之影響 53 3.2 微球模擬實驗 59 3.2.1 微球性質 59 3.2.2 血液流場性質 63 3.2.3 血管形狀 65 3.2.4 假體模型實驗與模擬結果的差異比較 67 第四章 結論 68 第五章 未來展望 70 參考文獻 74

    [1]Ying-Ying Li, Tsung-Lin Tsai and Dar-Bin Shieh , Biomedicial Applications of Gold nanoparticles. CHEMISTRY (The Chinese Chemical Society, Taipei)2010 Vol. 68, No. 1, pp. 11-20
    [2]De-Hao Tsai, Sherrie Elzey, Frank W. DelRio, Athena M. Keene, Katherine M. Tyner, Jeffrey D. Clogston, Robert I. MacCuspie, Suvajyoti Guha, Michael R. Zachariah and Vincent A. Hackley. Tumor necrosis factor interaction with gold nanoparticles. Nanoscale. 2012 May 21;4(10):3208-17.
    [3]De-Hao Tsai, Frank W. DelRio, Robert I. MacCuspie, Tae Joon Cho, Michael R. Zachariah, and Vincent A. Hackley.of Thiolated Polyethylene Glycol and Mercaptopropionic Acid on Gold Nanoparticles Measured by Physical Characterization Methods. Langmuir, 2010, 26 (12), pp 10325–10333
    [4]Chen, J.; Wang, D.; Xi, J.; Au, L.; Siekkinen, A.; Warsen, A.; Li, Z. Y.; Zhang, H.; Xia, Y.; Li, X. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 2007, 7(5), 1318.
    [5]Kim, J.; Park, S.; Lee, J. E.; Jin, S. M.; Lee, J. H.; Lee, I. S.; Yang, I.; Kim, J. S.; Kim, S. K.; Cho, M. H.; Hyeon, T. Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew Chem Int Ed Engl 2006, 45(46), 7754.
    [6]Faulk, W. P.; Taylor, G. M. An immunocolloid method for the electron microscope. Immunochemistry 1971, 8(11), 1081.
    [7]El-Sayed, I. H.; Huang, X.; El-Sayed, M. A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer dianostics: applications in oral cancer. Nano Lett 2005, 5(5), 829.
    [8]Gole, A.; Dash, C.; Soman, C.; Sainkar, S. R.; Rao, M.; Sastry, M. On the preparation, characterization, and enzymatic activity of fungal protease-gold colloid bioconjugates. Bioconjug Chem 2001, 12(5), 684.
    [9]Tkachenko, A. G.; Xie, H.; Coleman, D.; Glomm, W.; Ryan, J.; Anderson, M. F.; Franzen, S.; Feldheim, D. L. Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J Am Chem Soc 2003, 125(16), 4700.
    [10]Paciotti, G. F.; Myer, L.; Weinreich, D.; Goia, D.; Pavel, N.; McLaughlin, R. E.; Tamarkin, L. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 2004, 11(3), 169.
    [11]Kuo,Chun-Hong ; Huang,Michael H. Gold Nanomaterials with a Variety of Morphologies. CHEMISTRY (The Chinese Chemical Society, Taipei) March 2006, Vol. 65, No.1, pp.11-124
    [12]Faraday, M. The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light. Philos. Trans. R. Soc. London 1857, 147,145.
    [13]Frens, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nature 1973, 241, 20.
    [14]Yu, Y.Y.; Chang, S.S.; Lee, C.L.; Wang, C.R.C. Gold Nanorods - Electrochemical Synthesis and Optical Properties. J. Phys. Chem., 1997, 101, 6661-6664.
    [15]Johnson, C. J.; Dujardin, E.; Davis, S. A.; Murphy, C. J.; Mann, S. J. Growth and Form of Gold Nanorods Prepared by Seed-Mediated, Surfactant-Directed Synthesis. Mater. Chem. 2002, 12, 1765.
    [16]Chu, H.-C.; Kuo, C.-H.; Huang, M. H. Thermal Aqueous Solution Approach for the Synthesis of Triangular and Hexagonal Gold Nanoplates with Three Different Size Ranges Inorg. Chem. 2006, 45, 808.
    [17]Stephanie E.A. Gratton, Patrick D. Pohlhaus, Jin Lee, Ji Guo, Moo J. Cho, Joseph M. DeSimone, Nanofabricated particles for engineered drug therapies: A preliminary Biodistribution study of PRINT (TM) nanoparticles. Journal of Controlled Release, 2007. 121(1-2): p. 10-18.
    [18]Jillian L. Perry, Kevin P. Herlihy, Mary E. Napier, and Joseph M. Desimone, PRINT: A Novel Platform Toward Shape and Size Specific Nanoparticle Theranostics. Accounts of Chemical Research, 2011. 44(10): p. 990-998.
    [19]Park, M., Harrison, C., Chaikin, P. M., Register, R. A. & Adamson, D. H. Block copolymer lithography: periodic arrays of ~ 1011 holes in 1 square centimeter. Science 1997, 276, 1401–1404.
    [20]Albrecht, T. T., Steiner, R., DeRouchey, J., Stafford, C. M., Huang, E., Bal, M., Tuominen, M., Hawker, C. J. & Russell, T. P. Nanoscopic templates from oriented block copolymer films. Adv. Mater. 2000, 12, 787–791.
    [21]Cheng, J. Y., Ross, C. A., Chan, V. Z. H., Thomas, E. L., Lammertink, R. G. H. & Vancso, G. J. Formation of a cobalt magnetic dot array via block copolymer lithography. Adv. Mater.2001, 13, 1174–1178.
    [22]Tseng, W. H., Chen, C. K., Chiang, Y. W., Ho, R. M., Akasaka, S. & Hasegawa, H. Helical nanocomposites from chiral block copolymer templates. J. Am. Chem. Soc. 2009, 131, 1356–1357.
    [23]Tseng, Y. T., Tseng, W. H., Lin, C. H. & Ho, R. M. Fabrication of double-length-scale patterns via lithography, block copolymer templating, and electrodeposition. Adv. Mater. 2007, 19, 3584–3588.
    [24]Crossland, E. J. W., Kamperman, M., Nedelcu, M., Ducati, C., Wiesner, U., Smilgies, D. M., Toombes, G. E. S., Hillmyer, M. A., Ludwigs, S., Steiner, U. & Snaith, H. J. A bicontinuous double gyroid hybrid solar cell. Nano Lett. 2009, 9, 2807–2812.
    [25]Guldin, S., Rushkin, I., Stefik, M., Hur, K., Wiesner, U., Baumber, J. J. & Steiner, U. Tunable mesoporous bragg reflectors based on block-copolymer self-assembly. Adv. Mater. 2011, 23, 3664–3668.
    [26]Hsueh, H. Y., Chen, H. Y., She, M. S., Chen, C. K., Ho, R. M., Gwo, S., Hasegawa, H. & Thomas, E. L. Inorganic gyroid with exceptionally low refractive index from block copolymer templating. Nano Lett. 2010, 10, 4994–5000.
    [27]Hsueh, H. Y. & Ho, R. M. Bicontinuous ceramics with high surface area from block copolymer templates. Langmuir 2012, 28, 8518–8529.
    [28]Chung-Fu Cheng, Han-Yu Hsueh, Chih-Huang Lai, Chun-Jern Pan, Bing-Joe Hwang, Chi-Chang Hu and Rong-Ming Ho. Nanoporous gyroid platinum with high catalytic activity from block copolymer templates via electroless plating. NPG Asia Materials 2015
    [29]Han-Yu Hsueh , Hung-Ying Chen , Yu-Chueh Hung , Yi-Chun Ling , Shangjr Gwo , and Rong-Ming Ho. Well-Defi ned Multibranched Gold with Surface Plasmon Resonance in Near-Infrared Region from Seeding Growth Approach Using Gyroid Block Copolymer Template. Adv Mater. 2013 Mar 25;25(12):1780-6.
    [30]Han-Yu Hsueh, Yen-Chun Huang, Rong-Ming Ho, Chih-Huang Lai, Taichi Makida, Hirokazu Hasegawa. Nanoporous Gyroid Nickel from Block Copolymer Templates via Electroless Plating. 2011 Volume 23, Issue 27 Pages 3041–3046.
    [31]Jun Yang, Jingbi You, Chun-Chao Chen, Wan-Ching Hsu, Hai-ren Tan, Xing Wang Zhang, Ziruo Hong, and Yang Yang, Plasmonic Polymer Tandem Solar Cell. Acs Nano, 2011. 5(8): p. 6210-6217.
    [32]Hou L, Du J, Wang J, Liu Y, Sun W, Zheng Y, Zhang L, Hu H, Dai X, Guan W, Ma Y, Hong T. Expression of IL-13Ralpha2 in liver cancer cells and its effect on targeted therapy of liver cancer. J Cancer Res Clin Oncol. 2010 Jun;136(6):839-46.
    [33]Kleinstreuer C, Zhang Z, Donohue JF. Targeted drug-aerosol delivery in the human respiratory system. Annu Rev Biomed Eng. 2008;10:195-220.
    [34]Kennedy AS, Coldwell D, Nutting C, Murthy R, Wertman DE Jr, Loehr SP, Overton C, Meranze S, Niedzwiecki J, Sailer S. Resin 90Y-microsphere brachytherapy for unresectable colorectal liver metastases: modern USA experience. Int J Radiat Oncol Biol Phys. 2006 Jun 1;65(2):412-25.
    [35]Kennedy AS, Nutting C, Coldwell D, Gaiser J, Drachenberg C. Pathologic response and microdosimetry of (90)Y microspheres in man: review of four explanted whole livers. Int J Radiat Oncol Biol Phys. 2004 Dec 1;60(5):1552-63.
    [36]P. Worth Longest, Clement Kleinstreuer , John R. Buchanan. Efficient computation of micro-particle dynamics including wall effects. Elsevier Computers & Fluids Volume 33, Issue 4, May 2004, Pages 577–601.
    [37]Khezeli, Tahere , Daneshfar, Ali . Monodisperse silica nanoparticles coated with gold nanoparticles as a sorbent for the extraction of phenol and dihydroxybenzenes from water samples based on dispersive micro-solid-phase extraction: Response surface methodology. SEPARATION SCIENCE,38, 2804–2812,2015.
    [38]Amrita R. Yadav , Rashmi Sriram, Jared A. Carter , Benjamin L. Miller. Comparative study of solution–phase and vapor–phase deposition of minosilanes on silicon dioxide surfaces. Materials Science and Engineering C 35 (2014) 283–290
    [39]Wang, H.-L.; Lee, F.-C.; Tang, T.-Y.; Zhou, C.; Tsai, D.H. Assembly of functional gold nanoparticle on silica microsphere. Journal of Colloid and Interface Science, Volume 469, 1 May 2016, Pages 99–108
    [40]Rong-Ming Ho, Chun-Ku Chen, Yeo-Wan Chiang, Bao-Tsan Ko, and Chu-Chieh Lin, Tubular nanostructures from degradable core-shell cylinder microstructures in chiral diblock copolymers. Advanced Materials, 2006. 18(18): p. 2355-+
    [41]Basciano CA, Kleinstreuer C, Kennedy AS, Dezarn WA, Childress E. Computer modeling of controlled microsphere release and targeting in a representative hepatic artery system. Ann Biomed Eng. 2010 May;38(5):1862-79. doi: 10.1007/s10439-010-9955-z. Epub 2010 Feb 17.
    [42]Christopher A. Basciano, Clement Kleinstreuer and Andrew S. Kennedy. Computational Fluid Dynamics Modeling of 90Y Microspheres in Human Hepatic Tumors. Journal of Nuclear Medicine & Radiation Therapy June 15, 2011.
    [43]Suvajyoti Guha, Mingdong Li, Michael J. Tarlov and Michael R. Zachariah, Electrospray–differential mobility analysis of bionanoparticles. Cell press, Vol. 30, No. 5 2012.
    [44]Dong Keun Song, I. Wuled Lenggoro, Yoshimasa Hayashi, Kikuo Okuyama, and Sang Soo Kim, Changes in the shape and mobility of colloidal gold nanorods with electrospray and differential mobility analyzer methods. Langmuir, 2005. 21(23): p. 10375-10382.
    [45]Mingdong Li, Suvajyoti Guha, Rebecca Zangmeister, Michael J. Tarlov, and Michael R. Zachariah, Method for determining the absolute number concentration of nanoparticles from electrospray sources. Langmuir, 2011. 27(24): p. 14732-9.
    [46]Mingdong Li, Suvajyoti Guha, Rebecca Zangmeister, Michael J. Tarlov & Michael R. Zachariah, Quantification and Compensation of Nonspecific Analyte Aggregation in Electrospray Sampling. Aerosol Science and Technology, 2011. 45(7): p. 849-860.
    [47]Pease Iii, L.F., Physical analysis of virus particles using electrospray differential mobility analysis. Trends in Biotechnology, 2012. 30(4): p. 216-224.
    [48]D.-H. Tsai,L. F. Pease III, R. A. Zangmeister, M. J. Tarlov, and M. R. Zachariah. Aggregation Kinetics of Colloidal Particles Measured by Gas-Phase Differential Mobility Analysis. Langmuir 25, 140-146,2009
    [49]Aurélie Malzert-Fréon, Karin Schönhammer, Jean-Pierre Benoît, Frank Boury, Interactions between poly(ethylene glycol) and protein in dichloromethane/water emulsions. 2. Conditions required to obtain spontaneous emulsification allowing the formation of bioresorbable poly(D,L lactic acid) microparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2009. 73(1): p. 66-73.
    [50]De-Hao Tsai, Tae Joon Cho, Frank W. DelRio, Justin M. Gorham, Jiwen Zheng, Jiaojie Tan, Michael R. Zachariah, and Vincent A. Hackley, Controlled Formation and Characterization of Dithiothreitol-Conjugated Gold Nanoparticle Clusters. Langmuir, 2014. 30(12): p. 3397-3405.
    [51]Emma Harrison, James R. Nicol, Manuel Macias–Montero, George A. Burke, Jonathan A. Coulter, Brian J. Meenan, Dorian Dixon, A comparison of gold nanoparticle surface co-functionalization approaches using Polyethylene Glycol (PEG) and the effect on stability, non-specific protein adsorption and internalization. Materials Science & Engineering C-Materials for Biological Applications, 2016. 62: p. 710-718.
    [52]J. Ruff, J. Steitz, A. Buchkremer, M. Noyong, H. Hartmann, A. Besmehnc and U. Simon, Multivalency of PEG-thiol ligands affects the stability of NIR-absorbing hollow gold nanospheres and gold nanorods. Journal of Materials Chemistry B, 2016. 4(16): p. 2828-2841.
    [53]Karger, J. and D.M. Ruthven, Diffusion in nanoporous materials: fundamental principles, insights and challenges. New Journal of Chemistry, 2016. 40(5): p. 4027-4048.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE