簡易檢索 / 詳目顯示

研究生: 吳美慧
論文名稱: 電場調諧鋯酸鉛鋇薄膜
指導教授: 吳振名
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 87
中文關鍵詞: 微波調諧鋯酸鉛鋇鐵電薄膜
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用化學液相沈積法(chemical solution deposition,CSD)在Pt/Ti/SiO2/Si基板上鍍製鋯酸鉛鋇(Pb1-xBaxZrO3,PBZ)順電相薄膜,就以下幾種參數去探討其對薄膜電性的影響:(1)改變鉛鋇比例:以x = 0.8、0.6、0.4成分去探討不同鉛鋇比例對電性有何影響,由結果得知其介電常數、調變值和優異值(FoM)隨著Ba含量的增加而降低,而x = 0.4 的PBZ薄膜,在熱處理溫度750℃有最佳的電性:在頻率100kHz下,介電常數約150,在頻率1MHz、外加電場475kV/cm下,調變值約45%, FoM值約60;(2)熱處理溫度:以x=0.4成分的PBZ薄膜,探討熱處理溫度從650~750℃對電性有何影響,由結果得知其介電常數、調變值和FoM值隨著熱處理溫度增加而增加,顯示薄膜結晶性越好,其電性也越佳;(3)不同膜厚:以鍍覆2、4、6、8層來改變薄膜厚度來探討其對介電常數和調變值有何影響,其薄膜厚度分別為0.12、0.21、0.3、0.4μm,由結果得知其介電常數和調變值大致上隨著膜厚增加而增加,FoM值卻降低,;(4)改變熱處理方式:以分層RTA,之後再進行爐管熱處理,探討不同的熱處理方式對介電常數和調變值有何影響,由結果得知其介電常數、調變值和FoM值隨著爐管熱處理溫度增加而增加,但其幅度比一般熱處理方式來得小,顯示影響電性的主要因素為RTA的溫度。


    摘要………………………………………………………………………І 目錄………………………………………………………………….….Ⅱ 表目錄……………………………………………………………......Ⅳ 圖目錄…………………………………………………………….…….Ⅴ 第一章 前言………………………………………………………..1 1-1. 簡介…………………………..…………………………..1 1-2. 研究動機…………………………………………………..2 第二章 文獻回顧……………………………………….…………4 2-1. 鐵電材料………………………………………………….4 2-2. 鋯酸鉛鋇((Pb1-xBax)ZrO3)系列鐵電薄膜…………….9 2-3. 薄膜的製作方法……………………………………..………11 2-4. 電性……………………………………………………..……13 2-5. 微波性質………………………………………………..……14 第三章 實驗步驟……………………………….…………………30 3-1. Pt/Ti/SiO2/Si基板備………………………………….30 3-2. PBZ薄膜製備…………………………………………….30 3-3. 特性量測…………………………………………………..…32 第四章 結果與討論…………………………..…………………….37 4-1. 熱處理溫度的影響……………………………………….37 4-2. 膜厚的影響…………………………………………….…42 4-3. 成分的影響……………………………………………….45 4-4. RTA熱處理方式的影響……………………………………48 第五章 結論………………………………………………………….51 第六章 參考文獻…………………………………………………….82

    1. Y. A. Jeon, T. S. Seo, and S. G. Yoon, “Effect of Ni Doping on Improvement of the Tunability and Dielectric Loss of Ba0.5Sr0.5TiO3 Thin Films for Microwave Tunable Devices”, Jpn. J. Appl. Phys. 40, 6496 (2001).
    2. C. W.ang, B. L. Cheng, S. Y. Wang, H. B. Lu, Y. L. Zhou, Z. H. Chen, and G. Z. Yang, “Improved Dielectric properties and Tunability of Multilayered Thin Films of (Ba0.8Sr0.2)(Ti1-xZrx)O3 with Compositionally Graded Layer”, Appl. Phys. Lett. 84(5), 765 (2004).
    3. M. W. Cole, P. C. Joshi, and M. H. Ervin, “La Doped Ba1-xSrxTiO3 Thin Films for Tunable Device Applications”, J. Appl. Phys. 89, 6336 (2001).
    4. X. Zhu, W. Peng, J. miao, and D. Zheng, “Fabrication and Characterization of Tunable Dielectric Ba0.5Sr0.5TiO3 Thin Films by Pulsed Laser Deposition”, Mater. Lett. 58, 2045 (2004).
    5. M. W. Cole, W. D. Nothwang, C. Hubbard, and M. Ervin, “Low Dielectric Loss and Enhanced Tunability of Ba0.6Sr0.4TiO3 Based Thin Films via Material Compositional Design and Optimized Film Processing Methods”, J. Appl. Phys. 93(11), 9218 (2003).
    6. S. S. Toncich, “Potential Impact of Ferroelectric Technology For PCS and Cellular Communications”, Integrated Ferroelectrics 28(1-4), 37 (2000).
    7. 陳銘森, “鎳酸鑭電極對鋯鈦酸鉛溶凝膠薄膜製作與特性影響之研究”, 清華大學, 博士論文, (1996).
    8. G. Lu, A. Linsebigler, and T.Y. Jr., “Ti+3 Defect Sites on TiO2 (110): Production and Chemical Detection of Active Sites”, J. Phys. Chem. 98(45), 11733 (1994).
    9. G. Balducci, J. Kaspar, P. Forasiero, and M. Graziani, “Surface and Reduction Enerdeties of the CeO2-ZrO2 Catalyst”, J. Phys. Chem. B 102(3), 557 (1998).
    10. Y. Xu,“Ferroelectric Materials and Their Applications”, North-Holland, Netherlands, (1998).
    11. 葉明華, “脈衝雷射鍍膜法製備鈣鈦礦型鐵電薄膜之研究”, 清華大學,博士論文, (1993).
    12. 李雅明, 固態電子學,全華科技, (1995).
    13. M. Sayer and K. Sreenivas, “Ceramic Thin films: Fabrication and Applications”, Science 247, 1056 (1990).
    14. G. H. Haerting, “Ferroelectric Thin film for Electronic Applications”, J. Vac. Sci. Tech. 9A (3), 414 (1991).
    15. J. F. Scott, C. A. P. de Araujo, L. D. MzMillan, H. Yoshimori, H. Watanbe, T. Mihara, M. Azuma, T. Ueda, D. Ueda, and G. Kano, “Ferroelectric Thin Films in Integrated Microelectronic Devices”, Ferroelectrics 133, 47 (1992).
    16. 林諭南, “強介電陶瓷薄膜的應用”, 工業材料 107, 49 (1995).
    17. L. M. Sheppard, “Advances in Processing of ferroelectric Thin Films”, Ceram. Bull. 71, 85 (1992).
    18. G.H. Yi and M.Sayer, “Sol-Gel Processing of Complex Oxide-Films”, Ceram. Bull. 70(7), 1173 (1990).
    19. O.Auciello and R. Ramesh, “Electroceramic Thin Films Part Ι: Processing”, Mater. Res. Bull. 20, 21 (1996).
    20. K. Sweetser, “Infrared Imaging with Ferroelectrics”, Integrated Ferroelectrics 17, 349 (1997).
    21. A. T. Findikoglu, Q. X. Jia, D. W. Reagor, and X. D. Wu, “Tunable Microwave Mixing in Nonlinear Dielectric Thin Films of SrTiO3 and Sr0.5Ba0.5TiO3”, Electronics Letters, 12th Oct. 31(21), 1814 (1995).
    22. A. T. Findikoglu, Q. X. Jia, and D. W. reagor, “Superconductor / Nonlinear Dielectric Bilayers for Tunable and Adaptive Microwave Devices”, IEEE Transactions on Applied Superconductivity 7(2), 2925 (1997).
    23. S. G. Lu, X. H. Zhu, C. L. Mak, K. H. Wong, H. L. W. Chan, and L. Choy, “High Tunability in Compositionally Grader Epitaxial Barium Strontium Titanate Thin Films by Pulsed-Laser Deposition”, Appl. Phys. Lett. 82, 2877 (2003).
    24. H. S. Kim, M. H. Lim, H. G. Kim, I. D. Kim, “Characterization of Ni-doped BST Thin Films on LSCO Buffer Layers Prepared by Pulsed Laser Deposition”, Electrochemical and Solid state Letters 7(2), J1 (2004).
    25. Y. N. Oh, E. S. Choi, and S. G. Yoon, “Microwave Tunable Properties of Ni-doped (Ba0.5Sr0.5)TiO3 Thin Films Grown by Pulsed Laser Deposition”, Integrated Ferroelectrics 55, 877 (2003).
    26. D. M. Bubb, J. S. Horwitz, S. B. Qadri, S. W. Kirchoefer, C. Hubert, and J. Levy, “(Ba, Sr)TiO3 Thin Films Grown by Pulsed Laser Deposition with Low Dielectric Loss at Microwave Frequencies”, Appl. Phys. A 79, 99 (2004).
    27. K. B. Chong, L. B. Kong, L. F. Chen, L. Yan, C. Y. Tan, T. Yang, C. K. Ong, T. Osipowicz, “Improvement of Dielectric Loss Tangent of Al2O3 Doped Ba0.5Sr0.5TiO3 Thin Films for Tunable Microwave Devices”, J. Appl. Phys. 95(3), 1416 (2004).
    28. Phase Diagram for Ceramists, Fig. 862.
    29. K. Yamakawa, K. W. Gachigi, S. T. McKinstry, and J. P. Dougherty, “Structural and Electrical properties of Antiferroelectric Lead Zirconate Thin Films Prepared by Reactive Magnetron Co-Sputtering”, J. Mater. Sci. 32, 5169 (1997).
    30. E. Sawaguchi, H. Maniwa, and S. Hoshino, “Antiferroelectric Structure of Lead Zirconate”, Phys. Rev. 83, 1078 (1951).
    31. G. Shirane, and S. Hoshino, “X-ray Study of Phase Transition in PbZrO3 Containing Barium or Strontium”, Anta Cryat. 7, 203 (1954).
    32. S. Roberts, “Dielectric properties of Lead Zirconate and Barium-Lead zirconate”, J. Am. Ceram. Soc. 33, 63 (1950).
    33. E. Swaguchi, “Ferroelectricity vs. Antiferroelectricity in Solutions of PbZrO3 and PbTiO3”, J. Phys. Soc. Jpn. 8, 615 (1953).
    34. O. Auciello, A. I. Kingon and S.B. Krupanidhi, “Sputter Synthesis of Ferroelectric Films and Heterostructures”, Mater. Res. Bull. 21, 25 (1996).
    35. 陳三元, “強介電薄膜之液相化學法製作”, 工業材料 108, 100 (1995).
    36. B. A. Tuttle, and R. W. Schwartz, “Solution Deposition of Ferroelectric Thin Films”, Mater. Res. Bull. 20, 49 (1996).
    37. A. J. Moulson and J. M. Herbert, “Electroceramics, Materials, Properties and Applications”, 52 (1990).
    38. 吳朗, 電子陶瓷-介電, 全新資訊圖書 (1994).
    39. A. C. Carter, J. S. Horwitz, D. B. Chrisey, J. M. Pond, S. W. kirchoefer, W. Chang and P. Loferski, “The Effects of High Temperature Annealing and Composition on the Dielectric Properties of Thin Films of BaXSrZTiO3”, Mat. Res. Soc. Symp. Proc. 493, 347 (1998).
    40. D. Galt, t. Rivkina, and M.W. Cromar, “Microwave Tuning Quality and Power handing of Voltage-Tunable Capacitor: Semiconductor Versus Ba1-XsrXTiO3 Film”, Mat. Res. Soc. Symp. Proc. 493, 341 (1998).
    41. D. Galt, J. C. Price, J. A. beall, and R. H. ono, “Characterization of a Tunable thin Film Microwave YBa2Cu3O7-x/SrTiO3 Coplanar Capacitor”, Appl. Phys. Lett. 63(22), 3078 (1993).
    42. S. S. Gevorgian, and E. L. Kollberg, “Do We Really Need Ferroelectrics in Paraelectric Phase Only in Electrically Controlled Microwave Devices”, IEEE Tran. Micro. Theory Tech. 49(11), 2117 (2001).
    43. 曾嘉宏, “以射頻磁控濺鍍法製作鋯酸鉛鋇薄膜之研究”,清華大學, 碩士論文, (1999).
    44. 劉恆睿, “利用磁控濺鍍法在鎳酸鑭底電極上沈積鋯鈦酸鋇薄膜作為微波變容器之研究”, 清華大學, 碩士論文, (2003).
    45. A. Dixit, and S. B. Majumder, “Investigations on the Sol-Gel-Derived Barium Zirconate Titanate Thin Films”, Mater. Lett. 56, 933 (2003).
    46. C. Chen, W. Zhu, and T. Yu, “FT-IR Structure and Dielectric Property Investigation of Strontium Circonate Thin Films Prepared by MOD Technique”, Sur. Coat. Tech. 167, 245 (2003).
    47. 汪建民主編, 材料分析,民全書局, (1999).
    48. K. D. Sandwip, B. Robert, M. Prashant, and C. G. Wang, “Microstructural and Dielectric Properties of High Permittivity (Pb,Ba)ZrO3 Thin Films by Sol-Gel Processing”, Jpn. J. Appl. Phys. 39, L921 (2000).
    49. J. Zhai, X. Yao, J. Shen, L. Zhand, and H. Chen, “Structural and Dielectric Properties of Ba(ZrxTi1-x)O3 Thin Films Prepared by The Sol-Gel Process”, J. Phys. D: Appl. Phys. 37, 748 (2004).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE