研究生: |
張皓翔 Chang, Hao-Hsiang |
---|---|
論文名稱: |
奈米碳管及孔距對碳纖維/樹脂複合材料機械性質之影響暨修補系統黏著劑之研究 The Effect of CNT and Hole Distance on Mechanical Properties of Carbon Fiber/Epoxy Composites and Research of Patch System Adhesive |
指導教授: |
葉銘泉
Yip, Ming-Chuen |
口試委員: |
葉銘泉
方維倫 葉維磬 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 113 |
中文關鍵詞: | 奈米碳管 、機械 、疲勞 、雙孔 、修補 、複合材料 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文將碳纖維含浸混有不同含量奈米碳管的環氧樹脂進行疊層,製造出奈米碳管/碳纖維/環氧樹脂複合材料積層板試片,並對製程參數、模具以及材料配方進行研究,其結果確實可以增加製程效率,並且減少資源浪費達到絕佳的環保效益。
為了探討機械性質的效應,本文對試片進行不同孔距的雙孔洞加工,並且以不同之奈米碳管含量為變數,測量其靜態及動態機械強度的變化。實驗發現奈米碳管在靜態拉伸部分補強有限,而動態拉伸疲勞測試中,對未鑽孔以及鑽雙孔之試片都有絕佳的補強效應,而此補強效應會隨著鑽雙孔以及雙孔孔距的接近而下降,因為應力集中效應會使得材料的微小不均勻度及微小團聚被放大。但奈米碳管補強效應仍是顯而易見的。
此外,討論修補系統,使用自行研製調配黏著劑以及修補片對試片進行疲勞裂縫的修補。在實驗所設計黏著劑、修補片以及被修補試片同質性極高的前提下,得到了明顯的修補效應。
最後,以高解析單眼相機與SEM對破壞面進行拍攝,證實了奈米碳管對於碳纖維/樹脂介面的補強效應,並且此效應在介面脫層主導的動態疲勞測試中即發揮了極佳的作用。
[1] A. Godara, L. Mezzo, F. Luizi, A. Warrier, S. V. Lomov, A. W. van Vuure, L. Gorbatikh, P. Moldenaers and I. Verpoest, “Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites, ” Carbon, Vol. 47, pp. 2914-2923, 2009.
[2] Y. Tomohiro, A. Takahira, A. Akiko, I. Masaru and Y. Takashi, “Fabrication of CNT-Dispersed CFRP Using Length-Controlled CNTs: Measurement of CNT Length and Characterization of Mechanical Properties, ” Tsinghua Science and Technology, Vol. 14, pp. 100-104, 2009.
[3] D. C. Davis, J. W. Wilkerson, J. Zhu and D. O. O. Ayewah, “Improvements in mechanical properties of a carbon fiber epoxy composite using nanotube science and technology, ” Composite Structures, Vol. 92, pp. 2653-2662, 2010.
[4] R. J. Sager, P. J. Klein, D. C. Lagoudas, Q. Zhang, J. Liu, L. Dai and J. W. Baur, “ Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix, ” Composites Science and Technology, Vol. 69, pp. 898-904, 2009.
[5] Y. Zhou, F. Pervin, L. Lewis and S. Jeelani, “Fabrication and characterization of carbon/epoxy composites mixed with multi-walled carbon nanotubes, ” Materials Science and Engineering A, Vol.475, pp. 157-165, 2008.
[6] M. Cochet, W. K. Maser, A. M. Benito, M. A. Callejas, M. T. Martinez and L. M. Benoit, “Synthesis of a new polyaniline/nanotube composite: “in-situ” polymerization and charge transfer through siteselextive interaction,” Chem. Comm., Vol. 16, pp.1450-1451, 2001.
[7] S. Kumar, H. Doshi, M. Srinivasarao, L. O. Park and D. A. Schiraldi, “Fibers from polypropylene/nano carbon fiber composites,” Polymer, Vol. 43, pp.1701-1703, 2002.
[8] D. Qian, E. C. Dickey, R. Andrews and T. Rantell, “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites,” Applied Physics Letters, Vol.76, pp.2868-2870, 2000.
[9] A. Peigney, E. Flahaut, C. H. Laurent, F. Chastel and A. Rousset, “Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion,” Chemical Physics Letters, Vol. 352, pp.20-25, 2002.
[10] D. D. Lim, J. W. An and H. J. Lee, “Effect of carbon nanotube addition on the tribological behavior of carbon/carbon composites,” Wear 252, pp.512-517, 2002.
[11] S. L. Ruan, P. Gao and X. G. Yang, “Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes,” Polyver, Vol. 44, pp.643-654, 2003.
[12] A. Allaoui, S. Bai, H. M. Cheng and J. B. Bai, “Mechanical and electrical properties of a MWNT/epoxy composite,” Composites Science and Technology, Vol. 62, pp.1993-1998, 2002.
[13] Q. Li, M. Zaiser and V. Koutsos, “Carbon nanotube/epoxy resin composites using a block copolyver as a dispersing agent,” Phys. Stat. Sol.(a)201, R89, 2004.
[14] J. Zhu, J. D. Kim, H. Peng, J. L. Margrave, V. N. Khabashesku and E. V. Barrera, “Improving the Dispersion and Integration of Single-Walled Carbon Nanotubes in Epoxy Composites through Functionalization,” Nano Letters, Vol. 3 No. 8, pp.1107-1113, 2003.
[15] K. L. Reifsnider, E. G. Henneke, W. W. Stinchcomb and J. C. Duke, “Damage Mechanics and NDE of Composite Laminates,” Mechanics of Composite Materials, Recent Advances, Z. Hashin and C. T. Herakovich, eds., Pergamon Press, New York, pp. 399-420, 1983.
[16] W. Hwang and K. S. Han, “Fatigue of Composites Fatigue Modulus Concept and Life Prediction,” Journal of Composite Materials, Vol. 20, pp. 154-165, 1986.
[17] S. Ogihara, N. Takedab, S. Kobayashib and A. Kobayashia, “Effects of stacking sequence on microscopic fatigue damage development in quasi-isotropic CFRP laminates with interlaminar-toughened layers, ” Composites Science and Technology, Vol.59, pp. 1387-1398, 1999.
[18] K. Tohgo, S. Nakagawa and K. Kageyama, “Fatigue behavior of CFRP cross-ply laminates under on-axis and off-axis cyclic loading, ” International Journal of Fatigue, Vol.28, pp. 1254-1262, 2006.
[19] S. S. Wicks, R. G. de Villoria and B. L. Wardle, “Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes, ” Composites Science and Technology, Vol. 70, pp. 20-28, 2010.
[20] E. Persson, l. Eriksson and L. Zackrisson, “Effects of hole machining defects on strength and fatigue life of composite laminates, ” Composites Part A, Vol. 28A, pp. 141-151, 1997.
[21] J. M. Whitney and R. J. Nuismer, “Stress Fracture Criteria for Laminated Composite Containing Stress Concentration,” Journal of Composite Materials, Vol. 8, pp. 253-265, 1974.
[22] M. S. El-Zein and K. L. Reifsnider, “The Strength Prediction of Composite Laminates Containing a Circular Hole,” Journal of Composites Technology & Research, Vol. 12, pp.24-30, 1990.
[23] R. Olsson, J. Iwarsson, L. G. Melin, A. Sjogren and J. Soltia, ”Experiments and analysis of lamiates with artificial damage,” Composiites Science and Technologh, Vol. 63, pp.199-209, 2003.
[24] A. Al-Ostaz and I. Jasiuk, “Crack initiation and propagation in materials with randomly distributed holes,” Engineering Fracture Mechanics, Vol. 58, No. 5-6, pp.395-420, 1997.
[25] K. D. Cowley and P. W. R. Beaumont, “Damage Accumulation at Notches and the Fractures Stress and Temperature,” Composite Science and Technologh, Vol. 57, pp.1211-1219, 1997.
[26] M. T. Kortchot and P. W. R. Beaumont, “Damage Mechanics of Composite Materials : III .Prediction of Damage Growth and Notched Strength,” Composite Science and Technology, Vol. 40, pp.147-165, 1991.
[27] M. T. Kortchot and P. W. R. Beaumont, “Damage Mechanics of Composite Materials : IV. The Effect of Lay-up on Damage Growth and Notched Strength,” Composite Science and Technology, Vol. 40, pp.169-179, 1991.
[28] C. Soutis, N. A. Fleck and P. A. Smith, “Failure Prediction Technique for Compression Loaded Carbon Fibre-Epoxy Laminate with Open Holes,” Journal of Composite Materials, Vol. 25, pp.1476-1498, 1991.
[29] A. Nakai, T. Ohki, N. Takeda and H. Hamada, “Mechanical properties and micro-fracture behaviors of flat braided composites with a circulat hole,” Compostite Structures, Vol. 52, pp.315-322, 2001.
[30] X. F. Yao, M. H. Kolstein, F. S. K. Bijlaard, Wei Xu and M. Q. Xu, “Tensile strength and fracture of glass fiber-reinforces plastic (GFRP) plate with an eccentrically located circular hole,” Polymer Testing, Vol. 22, pp.995-963, 2003.
[31] A. Baker, “Bonded composite repair of fatigue-cracked primary aircraft structure, ” Composite Structures, Vol. 47, pp. 431-443, 1999.
[32] 楊智涵, “孔距對貼片修補之碳纖維/環氧樹脂複合材料之靜態與疲勞行為的影響, ” 國立清華大學動力機械工程學系碩士論文, 2004.
[33] 祁慧明, “扭轉疲勞對CFRP複合材料之軸向疲勞的影響, ” 國立清華大學動力機械工程學系碩士論文, 1993.