簡易檢索 / 詳目顯示

研究生: 呂曼寧
Lu, Man-Ning
論文名稱: 染料敏化電池於弱光環境下之研究
A Study on Dye‐Sensitized Cells under Dim Light
指導教授: 衛子健
Wei, Tzu-Chien
口試委員: 吳茂松
Wu, Mao-Sung
王潔
Wang, Jane
林正裕
Lin, Jeng-Yu
陳志銘
Chen, Chih-Ming
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 126
中文關鍵詞: 染料敏化電池弱光
外文關鍵詞: Dye‐Sensitized Cells, Dim Light
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 染料敏化電池(dye-sensitized cells, DSCs)在太陽光和室內光源下皆可將光有效地轉換為電能,因而被認為是有前途的光伏技術。然大多數有關室內光下DSC的研究文獻幾乎都是通過材料革新來提升轉換效率,例如:開發新型染料、新型氧化還原對或是新型的結構。本研究與上述方法不同,純粹利用已商業化或成熟的材料來源,針對入射光由模擬太陽光轉變為室內光源時DSC元件內光物理及電子傳輸特性的變化,逐步地改善室內光下DSC的轉換效率。如以TL84螢光燈作為室內光源,DSC元件進行四個階段的優化。第一階段為在弱光下維持足夠的電子擴散長度,以確保維持較好的電子收集效率,因此TiO2的膜厚控制是提升轉換效率的關鍵。第二階段為選用(010)主導的TiO2晶面,抑制弱光下TiO2 /染料/電解質界面的電子再結合。第三階段則為使用高緻密性的電沉積阻隔層來減少FTO/ TiO2 /電解質界面的電子耗損。最後第四階段是調控含競爭吸收入射光的碘離子濃度同時維持足夠染料再生總合實驗結果在極弱的50 lux 的室內光源TL84,優化前後的DSC轉換效率為2.43%與14.86%。


    Dye-sensitized cells (DSCs) are promising photovoltaic technology that converts photon energy to electric energy efficiently in direct sunlight and ambient indoor light. However, most papers address this triumph by utilizing novel materials such as new sensitizers, new redox couples, or new architecture, herein we report a different approach, which progressively improves a dim-light illuminated DSC’s performance based on commercially mature materials. Specifically, the thickness of the mesoscopic TiO2 film, the preferred facet of TiO2 nanoparticles, the quality of compact layer, and iodine/iodide concentration are stepwise optimized based on the consideration of dim light condition. At the first stage: the electron diffusion length has to be as long as possible to make sure high electron collection under dim light. Controling the TiO2 thickness is a key factor for dim light DSC. At the second stage: to control recombination at TiO2/dye/EL interface, using (010) dominant TiO2 nanoparticles for photoanode could reduce recombination more effectively under dim light. At the third stage: the charge recombination between the FTO/TiO2/EL is also one of the main electron loss sites. The compact layer made by electro-deposition could suppress the electron loss at this interface. At the laste stage: iodine redox couple can absorb light where overlaps the region of N719. It implies that electrolyte and dye will compete for the incident light. However, the amount of iodide species required to fulfil dye regeneration speed remains high under dim light. Combining these two reasons, the concentration of iodine is reduced by a quarter, will get the best performance under dim light. Finally, the conversion efficiency of a DSC under extreme dim of 50 lux fluorescent light is improved from 2.43% to 14.86%, accordingly.

    摘要 i Abstract ii 目錄 iii 圖目錄 v 表目錄 viii 符號列表 ix 第一章、序論 1 1.1 前言 1 1.2 太陽能電池發展 3 1.3染料敏化太陽能電池 5 1.3.1染料敏化太陽能電池的結構 5 1.3.2染料敏化太陽能電池工作原理 7 第二章、文獻回顧 9 2.1 從太陽光(1 Sun)到弱太陽光(low Sun)量測太陽能電池 9 2.2 室外和室內量測太陽能電池的影響因子 20 2.3 各種太陽能電池於室內燈源環境 21 2.3.1標準室內光源種類 21 2.3.2室外與室內光強度轉換 23 2.3.3不同類型光伏元件應用於室內光源環境 25 2.4 研究動機 33 2.5 染料敏化太陽能電池各組成材料特性概述 35 2.5.1染料敏化太陽能電池之陽極材料TiO2 35 2.5.2 染料敏化太陽能電池之染料 40 2.5.3染料敏化太陽能電池之電解質 43 2.5.4染料敏化太陽能電池之對電極 46 第三章、實驗藥品與儀器量測 47 3.1 藥品與材料 47 3.2 儀器量測 49 3.2.1 X光繞射儀 49 3.2.2 場發掃描式電子顯微鏡 49 3.2.3穿透式電子顯微鏡 49 3.2.4紫外光-可見光光譜儀 49 3.2.5入射單色光子轉換效率 49 3.2.6 電化學阻抗頻譜 50 3.2.7 元件量測 50 3.3 染料敏化太陽能電池性能指標 53 3.3.1 電流電壓曲線特性 53 3.3.2 電化學阻抗頻譜 56 第四章、結果與討論 62 4.1 STC下標準DSSC元件 62 4.1.1 STC與CIE光源下量測 62 4.1.2 STC下標準DSSC元件製備參數 63 4.1.3 STC下標準DSSC元件量測結果 65 4.1.2 小結 69 4.2 調整TiO2陽極膜厚 70 4.2.1 原理介紹 70 4.2.2 調整TiO2陽極膜厚之實驗製備條件 72 4.2.3 TiO2陽極膜對室內光應用之影響 74 4.2.4 小結 80 4.3 TiO2晶型對弱光DSSC的性能影響 81 4.3.1 原理與背景 81 4.3.2 TiO2晶型之實驗製備條件 83 4.3.3 TiO2晶型的結果與討論 85 4.3.4 小結 92 4.4 緻密層品質對弱光DSSC性能的影響 93 4.4.1 原理與背景 93 4.4.2緻密層品質之實驗製備條件 95 4.4.3緻密層品質之結果與討論 97 4.4.4 小結 104 4.5 電解質碘濃度對弱光DSSC性能的影響 105 4.5.1 原理與背景 105 4.5.2電解質碘濃度之實驗製備參數 107 4.5.3電解質碘濃度實驗之討論 109 4.5.4 小結 111 4.6不同CIE室內光源對弱光DSSC效率之影響 112 第五章、結論 114 附錄 116 參考文獻 122  

    [1] R. Haight, W. Haensch, D. Friedman, Science 2016, 353, 124.
    [2] P. Würfel, S. Finkbeiner, E. Daub, Applied Physics A: Materials Science & Processing 1995, 60, 67.
    [3] S. Pillai, K. Catchpole, T. Trupke, M. Green, Journal of applied physics 2007, 101, 093105.
    [4] U. Hashim, A. A. Ehsan, I. Ahmad, Chiang Mai J. Sci 2007, 34, 47.
    [5] S. Hore, R. Kern, Applied Physics Letters 2005, 87, 263504.
    [6] B. O'regan, M. Grätzel, nature 1991, 353, 737.
    [7] J. Halme, Master of Science in Technology, Helsinki University of Technology, Helsinki, Finland 2002.
    [8] H. Noguchi, B. Ohtani, K. Uosaki, Chemistry letters 2005, 34, 694.
    [9] 吳春桂, 興大工程學刊 2014, 25, 15.
    [10] S. Thomas, T. Deepak, G. Anjusree, T. Arun, S. V. Nair, A. S. Nair, Journal of Materials Chemistry A 2014, 2, 4474.
    [11] S. E. Koops, B. C. O’Regan, P. R. Barnes, J. R. Durrant, Journal of the American Chemical Society 2009, 131, 4808.
    [12] M. N. Lu, C. Y. Chang, T. C. Wei, J. Y. Lin, Journal of Nanomaterials 2016, 2016.
    [13] M. A. Green, E. D. Dunlop, D. H. Levi, J. Hohl‐Ebinger, M. Yoshita, A. W. Ho‐Baillie, Progress in Photovoltaics: Research Applications 2019, 27, 565.
    [14] R. Guerrero-Lemus, J. M. Martínez-Duart, in Renewable Energies and CO2, Springer, 2013, 115.
    [15] N. Reich, W. Van Sark, E. Alsema, S. Kan, S. Silvester, A. Van der Heide, R. Lof, R. Schropp, "Weak light performance and spectral response of different solar cell types", presented at Proceedings of the 20th European Photovoltaic Solar Energy Conference, 2005.
    [16] N. Reich, W. Van Sark, W. Turkenburg, Renewable Energy 2011, 36, 642.
    [17] A. Kassis, M. Saad, Solar Energy Materials and Solar Cells 2010, 94, 2108.
    [18] B. Knisely, Angle of incidence and non-intrusive cell quantum efficiency measurements of commercial photovoltaic modules, Arizona State University, 2013.
    [19] J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, N. C. Giebink, Nature communications 2015, 6, 1.
    [20] H. J. Kim, Y. C. Kim, J. T. Hong, M. J. Kim, H. W. Seo, J. W. Park, J. Y. Choi, Journal of Electrical Engineering Technology 2007, 2, 513.
    [21] J. H. Song, Y. S. An, S. G. Kim, S. J. Lee, J. H. Yoon, Y. K. Choung, Energy and Buildings 2008, 40, 2067.
    [22] C. P. Lee, C. A. Lin, T. C. Wei, M. L. Tsai, Y. Meng, C. T. Li, K. C. Ho, C. I. Wu, S. P. Lau, J. H. He, Nano Energy 2015, 18, 109.
    [23] https://issuu.com/erian.ntu/docs/eri_n_annualreport2014_3jun_lr.
    [24] A. Virtuani, H. Müllejans, E. D. Dunlop, Progress in Photovoltaics: Research Applications 2011, 19, 11.
    [25] https://store-us.semi.org/products/pv08000-semi-pv80-specification-of-indoor-lighting-simulator-requirements-for-emerging-photovoltaic.
    [26] A. K. R. Choudhury, Principles of Colour and Appearance Measurement: Visual Measurement of Colour, Colour Comparison and Management, Woodhead Publishing, 2014.
    [27] https://sensing.konicaminolta.us/blog/understanding-standard-illuminants-in-color-measurement/.
    [28] N. v. Reich, W. Van Sark, W. Turkenburg, Renewable Energy 2011, 36, 642.
    [29] W. Blevin, B. Steiner, Metrologia 1975, 11, 97.
    [30] A. C. Parr, Journal of research of the National Institute of Standards 2001, 106, 151.
    [31] R. Twohig, 2011.
    [32] N. Sridhar, D. Freeman, "A study of dye sensitized solar cells under indoor and low level outdoor lighting: comparison to organic and inorganic thin film solar cells and methods to address maximum power point tracking", presented at 26th European photovoltaic solar energy conference and exhibition, 2011.
    [33] F. De Rossi, T. Pontecorvo, T. M. Brown, Applied Energy 2015, 156, 413.
    [34] Y. S. Tingare, N. S. n. Vinh, H. H. Chou, Y. C. Liu, Y. S. Long, T. C. Wu, T. C. Wei, C. Y. Yeh, Advanced Energy Materials 2017, 7, 1700032.
    [35] H. H. Chou, Y. C. Liu, G. Fang, Q. K. Cao, T. C. Wei, C. Y. Yeh, ACS applied materials interfaces 2017, 9, 37786.
    [36] N. Yan, C. Zhao, S. You, Y. Zhang, W. Li, Chinese Chemical Letters 2019.
    [37] M. Ramamoorthy, D. Vanderbilt, R. King-Smith, Physical Review B 1994, 49, 16721.
    [38] G. Liu, H. Yang, J. Pan, Y. Yang, G. Qing, Chem. Rev 2014, 114, 9559.
    [39] S. M. Gupta, M. Tripathi, Chinese Science Bulletin 2011, 56, 1639.
    [40] G. Liu, H. G. Yang, J. Pan, Y. Q. Yang, G. Q. Lu, H.-M. Cheng, Advanced Functional Materials 2014, 114, 9559.
    [41] N. Murakami, Y. Kurihara, T. Tsubota, T. Ohno, The Journal of Physical Chemistry C 2009, 113, 3062.
    [42] X. Wu, Z. Chen, G. Q. Lu, L. Wang, Advanced Functional Materials 2011, 21, 4167.
    [43] J. Yu, J. Fan, K. Lv, Nanoscale 2010, 2, 2144.
    [44] J. Pan, X. Wu, L. Wang, G. Liu, G. Q. M. Lu, H.-M. Cheng, Chemical Communications 2011, 47, 8361.
    [45] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Gratzel, J. Am. Chem. Soc 1993, 115, 6382.
    [46] M. K. Nazeeruddin, E. Baranoff, M. Grätzel, Solar Energy 2011, 85, 1172.
    [47] A. Mishra, M. K. Fischer, P. Bäuerle, Angewandte Chemie International Edition 2009, 48, 2474.
    [48] Y.-S. Yen, H. H. Chou, Y. C. Chen, C. Y. Hsu, J. T. Lin, Journal of Materials Chemistry 2012, 22, 8734.
    [49] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Chemical reviews 2015, 115, 2136.
    [50] F. Schiffmann, J. VandeVondele, J. Hutter, A. Urakawa, R. Wirz, A. Baiker, Proceedings of the National Academy of Sciences 2010, 107, 4830.
    [51] J. N. Clifford, E. Palomares, M. K. Nazeeruddin, M. Grätzel, J. R. Durrant, The Journal of Physical Chemistry C 2007, 111, 6561.
    [52] J. G. Rowley, B. H. Farnum, S. Ardo, G. J. Meyer, The Journal of Physical Chemistry Letters 2010, 1, 3132.
    [53] T. Privalov, G. Boschloo, A. Hagfeldt, P. H. Svensson, L. Kloo, The Journal of Physical Chemistry C 2008, 113, 783.
    [54] J. L. Lan, T. C. Wei, S. P. Feng, C. C. Wan, G. Cao, The Journal of Physical Chemistry C 2012, 116, 25727.
    [55] B. A. Gregg, F. Pichot, S. Ferrere, C. L. Fields, The Journal of Physical Chemistry B 2001, 105, 1422.
    [56] Y. Liu, A. Hagfeldt, X. R. Xiao, S. E. Lindquist, Solar Energy Materials Solar Cells 1998, 55, 267.
    [57] M. Hubert, M. Dumont, J. Paquet, Chronobiology international 1998, 15, 59.
    [58] P. Hasin, M. A. Alpuche-Aviles, Y. Wu, The Journal of Physical Chemistry C 2010, 114, 15857.
    [59] J. Chae, D. Y. Kim, S. Kim, M. Kang, Journal of industrial and Engineering Chemistry 2010, 16, 906.
    [60] T. Battumur, S. H. Mujawar, Q. Truong, S. B. Ambade, W. Lee, S.-H. Han, S.-H. Lee, Current Applied Physics 2012, 12, e49.
    [61] http://www.semi.org/en/Standards/P_000787.
    [62] https://www.jeita.or.jp/japanese/standard/book/ET-9101_J/.
    [63] Y. S. Long, S. T. Hsu, T. C. Wu, "Capacitance effect from high to low level lighting by real-time one-sweep method for OPV device", presented at Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd, 2015.
    [64] S. T. Hsu, Y. S. Long, T. C. Wu, M. A. Tsai, "Spectrum response measurement for organic photovoltaic and dye sensitized solar cell. Part II: Calculation and standardization", presented at Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd, 2016.
    [65] J. Hohl‐Ebinger, W. Warta, Progress in Photovoltaics: Research and Applications 2011, 19, 573.
    [66] F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, A. Hagfeldt, Solar Energy Materials and Solar Cells 2005, 87, 117.
    [67] J. Bisquert, M. Grätzel, Q. Wang, F. Fabregat-Santiago, The Journal of Physical Chemistry B 2006, 110, 11284.
    [68] J. Halme, Physical Chemistry Chemical Physics 2011, 13, 12435.
    [69] Y. Li, K. Yoo, D.-K. Lee, J. Y. Kim, H. Kim, B. Kim, M. J. Ko, Nanoscale 2013, 5, 4711.
    [70] M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, Journal of the American Chemical Society 2001, 123, 1613.
    [71] P. R. Barnes, L. Liu, X. Li, A. Y. Anderson, H. Kisserwan, T. H. Ghaddar, J. R. Durrant, B. C. O’Regan, Nano letters 2009, 9, 3532.
    [72] S. Ito, M. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Péchy, M. Jirousek, A. Kay, S. M. Zakeeruddin, M. Grätzel, Progress in photovoltaics: research and applications 2006, 14, 589.
    [73] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Grätzel, Journal of the American Chemical Society 2005, 127, 16835.
    [74] L. Liang, S. Dai, L. Hu, F. Kong, W. Xu, K. Wang, The Journal of Physical Chemistry B 2006, 110, 12404.
    [75] J. Bisquert, The Journal of Physical Chemistry B 2002, 106, 325.
    [76] J. J. Wu, G. R. Chen, C. C. Lu, W. T. Wu, J. S. Chen, Nanotechnology 2008, 19, 105702.
    [77] M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda, The Journal of Physical Chemistry B 2006, 110, 13872.
    [78] M. Ansari-Rad, Y. Abdi, E. Arzi, The Journal of Physical Chemistry C 2012, 116, 10867.
    [79] K. Zhu, S.-R. Jang, A. J. Frank, The Journal of Physical Chemistry Letters 2011, 2, 1070.
    [80] J. Bisquert, I. Mora-Seró, The Journal of Physical Chemistry Letters 2009, 1, 450.
    [81] H. Wang, M. Liu, C. Yan, J. Bell, Beilstein journal of nanotechnology 2012, 3, 378.
    [82] J. Li, D. Xu, Chemical Communications 2010, 46, 2301.
    [83] N. Roy, Y. Sohn, D. Pradhan, ACS nano 2013, 7, 2532.
    [84] P. Zhai, T. Y. Hsieh, C. Y. Yeh, K. S. K. Reddy, C. C. Hu, J. H. Su, T. C. Wei, S. P. Feng, Advanced Functional Materials 2015, 25, 6093.
    [85] B. Liu, E. S. Aydil, Journal of the American Chemical Society 2009, 131, 3985.
    [86] L. Bay, K. West, Solar energy materials and solar cells 2005, 87, 613.
    [87] K. Zhu, N. R. Neale, A. Miedaner, A. J. Frank, Nano letters 2007, 7, 69.
    [88] S. Lee, J. H. Noh, H. S. Han, D. K. Yim, D. H. Kim, J.-K. Lee, J. Y. Kim, H. S. Jung, K. S. Hong, The Journal of Physical Chemistry C 2009, 113, 6878.
    [89] J. Gong, J. Liang, K. Sumathy, Renewable and Sustainable Energy Reviews 2012, 16, 5848.
    [90] C. S. Kovash, J. D. Hoefelmeyer, B. A. Logue, Electrochimica Acta 2012, 67, 18.
    [91] S. Ito, P. Liska, P. Comte, R. Charvet, P. Péchy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin, Chemical Communications 2005, 4351.
    [92] M. S. Wu, C. H. Tsai, J. J. Jow, T. C. J. E. A. Wei, 2011, 56, 8906.
    [93] K. I. Jang, E. Hong, J. H. Kim, Korean Journal of Chemical Engineering 2012, 29, 356.
    [94] K. I. Jang, E. Hong, J. H. Kim, Korean Journal of Chemical Engineering 2013, 30, 620.
    [95] K. I. Jang, E. Hong, J. H. Kim, Korean Journal of Chemical Engineering 2012, 29, 356.
    [96] H. J. An, S. R. Jang, R. Vittal, J. Lee, K. J. Kim, Electrochimica Acta 2005, 50, 2713.
    [97] F. Fabregat-Santiago, G. Garcia-Belmonte, J. Bisquert, A. Zaban, P. Salvador, The Journal of Physical Chemistry B 2002, 106, 334.
    [98] F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, A. Hagfeldt, Solar Energy Materials Solar Cells 2005, 87, 117.
    [99] A. Y. Anderson, P. R. Barnes, J. R. Durrant, B. C. O’Regan, The Journal of Physical Chemistry C 2011, 115, 2439.
    [100] T. W. Hamann, J. W. Ondersma, Energy Environmental Science 2011, 4, 370.
    [101] Y. Sun, A. C. Onicha, M. Myahkostupov, F. N. Castellano, ACS applied materials interfaces 2010, 2, 2039.

    QR CODE