研究生: |
呂曼寧 Lu, Man-Ning |
---|---|
論文名稱: |
染料敏化電池於弱光環境下之研究 A Study on Dye‐Sensitized Cells under Dim Light |
指導教授: |
衛子健
Wei, Tzu-Chien |
口試委員: |
吳茂松
Wu, Mao-Sung 王潔 Wang, Jane 林正裕 Lin, Jeng-Yu 陳志銘 Chen, Chih-Ming |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 126 |
中文關鍵詞: | 染料敏化電池 、弱光 |
外文關鍵詞: | Dye‐Sensitized Cells, Dim Light |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
染料敏化電池(dye-sensitized cells, DSCs)在太陽光和室內光源下皆可將光有效地轉換為電能,因而被認為是有前途的光伏技術。然大多數有關室內光下DSC的研究文獻幾乎都是通過材料革新來提升轉換效率,例如:開發新型染料、新型氧化還原對或是新型的結構。本研究與上述方法不同,純粹利用已商業化或成熟的材料來源,針對入射光由模擬太陽光轉變為室內光源時DSC元件內光物理及電子傳輸特性的變化,逐步地改善室內光下DSC的轉換效率。如以TL84螢光燈作為室內光源,DSC元件進行四個階段的優化。第一階段為在弱光下維持足夠的電子擴散長度,以確保維持較好的電子收集效率,因此TiO2的膜厚控制是提升轉換效率的關鍵。第二階段為選用(010)主導的TiO2晶面,抑制弱光下TiO2 /染料/電解質界面的電子再結合。第三階段則為使用高緻密性的電沉積阻隔層來減少FTO/ TiO2 /電解質界面的電子耗損。最後第四階段是調控含競爭吸收入射光的碘離子濃度同時維持足夠染料再生總合實驗結果在極弱的50 lux 的室內光源TL84,優化前後的DSC轉換效率為2.43%與14.86%。
Dye-sensitized cells (DSCs) are promising photovoltaic technology that converts photon energy to electric energy efficiently in direct sunlight and ambient indoor light. However, most papers address this triumph by utilizing novel materials such as new sensitizers, new redox couples, or new architecture, herein we report a different approach, which progressively improves a dim-light illuminated DSC’s performance based on commercially mature materials. Specifically, the thickness of the mesoscopic TiO2 film, the preferred facet of TiO2 nanoparticles, the quality of compact layer, and iodine/iodide concentration are stepwise optimized based on the consideration of dim light condition. At the first stage: the electron diffusion length has to be as long as possible to make sure high electron collection under dim light. Controling the TiO2 thickness is a key factor for dim light DSC. At the second stage: to control recombination at TiO2/dye/EL interface, using (010) dominant TiO2 nanoparticles for photoanode could reduce recombination more effectively under dim light. At the third stage: the charge recombination between the FTO/TiO2/EL is also one of the main electron loss sites. The compact layer made by electro-deposition could suppress the electron loss at this interface. At the laste stage: iodine redox couple can absorb light where overlaps the region of N719. It implies that electrolyte and dye will compete for the incident light. However, the amount of iodide species required to fulfil dye regeneration speed remains high under dim light. Combining these two reasons, the concentration of iodine is reduced by a quarter, will get the best performance under dim light. Finally, the conversion efficiency of a DSC under extreme dim of 50 lux fluorescent light is improved from 2.43% to 14.86%, accordingly.
[1] R. Haight, W. Haensch, D. Friedman, Science 2016, 353, 124.
[2] P. Würfel, S. Finkbeiner, E. Daub, Applied Physics A: Materials Science & Processing 1995, 60, 67.
[3] S. Pillai, K. Catchpole, T. Trupke, M. Green, Journal of applied physics 2007, 101, 093105.
[4] U. Hashim, A. A. Ehsan, I. Ahmad, Chiang Mai J. Sci 2007, 34, 47.
[5] S. Hore, R. Kern, Applied Physics Letters 2005, 87, 263504.
[6] B. O'regan, M. Grätzel, nature 1991, 353, 737.
[7] J. Halme, Master of Science in Technology, Helsinki University of Technology, Helsinki, Finland 2002.
[8] H. Noguchi, B. Ohtani, K. Uosaki, Chemistry letters 2005, 34, 694.
[9] 吳春桂, 興大工程學刊 2014, 25, 15.
[10] S. Thomas, T. Deepak, G. Anjusree, T. Arun, S. V. Nair, A. S. Nair, Journal of Materials Chemistry A 2014, 2, 4474.
[11] S. E. Koops, B. C. O’Regan, P. R. Barnes, J. R. Durrant, Journal of the American Chemical Society 2009, 131, 4808.
[12] M. N. Lu, C. Y. Chang, T. C. Wei, J. Y. Lin, Journal of Nanomaterials 2016, 2016.
[13] M. A. Green, E. D. Dunlop, D. H. Levi, J. Hohl‐Ebinger, M. Yoshita, A. W. Ho‐Baillie, Progress in Photovoltaics: Research Applications 2019, 27, 565.
[14] R. Guerrero-Lemus, J. M. Martínez-Duart, in Renewable Energies and CO2, Springer, 2013, 115.
[15] N. Reich, W. Van Sark, E. Alsema, S. Kan, S. Silvester, A. Van der Heide, R. Lof, R. Schropp, "Weak light performance and spectral response of different solar cell types", presented at Proceedings of the 20th European Photovoltaic Solar Energy Conference, 2005.
[16] N. Reich, W. Van Sark, W. Turkenburg, Renewable Energy 2011, 36, 642.
[17] A. Kassis, M. Saad, Solar Energy Materials and Solar Cells 2010, 94, 2108.
[18] B. Knisely, Angle of incidence and non-intrusive cell quantum efficiency measurements of commercial photovoltaic modules, Arizona State University, 2013.
[19] J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, N. C. Giebink, Nature communications 2015, 6, 1.
[20] H. J. Kim, Y. C. Kim, J. T. Hong, M. J. Kim, H. W. Seo, J. W. Park, J. Y. Choi, Journal of Electrical Engineering Technology 2007, 2, 513.
[21] J. H. Song, Y. S. An, S. G. Kim, S. J. Lee, J. H. Yoon, Y. K. Choung, Energy and Buildings 2008, 40, 2067.
[22] C. P. Lee, C. A. Lin, T. C. Wei, M. L. Tsai, Y. Meng, C. T. Li, K. C. Ho, C. I. Wu, S. P. Lau, J. H. He, Nano Energy 2015, 18, 109.
[23] https://issuu.com/erian.ntu/docs/eri_n_annualreport2014_3jun_lr.
[24] A. Virtuani, H. Müllejans, E. D. Dunlop, Progress in Photovoltaics: Research Applications 2011, 19, 11.
[25] https://store-us.semi.org/products/pv08000-semi-pv80-specification-of-indoor-lighting-simulator-requirements-for-emerging-photovoltaic.
[26] A. K. R. Choudhury, Principles of Colour and Appearance Measurement: Visual Measurement of Colour, Colour Comparison and Management, Woodhead Publishing, 2014.
[27] https://sensing.konicaminolta.us/blog/understanding-standard-illuminants-in-color-measurement/.
[28] N. v. Reich, W. Van Sark, W. Turkenburg, Renewable Energy 2011, 36, 642.
[29] W. Blevin, B. Steiner, Metrologia 1975, 11, 97.
[30] A. C. Parr, Journal of research of the National Institute of Standards 2001, 106, 151.
[31] R. Twohig, 2011.
[32] N. Sridhar, D. Freeman, "A study of dye sensitized solar cells under indoor and low level outdoor lighting: comparison to organic and inorganic thin film solar cells and methods to address maximum power point tracking", presented at 26th European photovoltaic solar energy conference and exhibition, 2011.
[33] F. De Rossi, T. Pontecorvo, T. M. Brown, Applied Energy 2015, 156, 413.
[34] Y. S. Tingare, N. S. n. Vinh, H. H. Chou, Y. C. Liu, Y. S. Long, T. C. Wu, T. C. Wei, C. Y. Yeh, Advanced Energy Materials 2017, 7, 1700032.
[35] H. H. Chou, Y. C. Liu, G. Fang, Q. K. Cao, T. C. Wei, C. Y. Yeh, ACS applied materials interfaces 2017, 9, 37786.
[36] N. Yan, C. Zhao, S. You, Y. Zhang, W. Li, Chinese Chemical Letters 2019.
[37] M. Ramamoorthy, D. Vanderbilt, R. King-Smith, Physical Review B 1994, 49, 16721.
[38] G. Liu, H. Yang, J. Pan, Y. Yang, G. Qing, Chem. Rev 2014, 114, 9559.
[39] S. M. Gupta, M. Tripathi, Chinese Science Bulletin 2011, 56, 1639.
[40] G. Liu, H. G. Yang, J. Pan, Y. Q. Yang, G. Q. Lu, H.-M. Cheng, Advanced Functional Materials 2014, 114, 9559.
[41] N. Murakami, Y. Kurihara, T. Tsubota, T. Ohno, The Journal of Physical Chemistry C 2009, 113, 3062.
[42] X. Wu, Z. Chen, G. Q. Lu, L. Wang, Advanced Functional Materials 2011, 21, 4167.
[43] J. Yu, J. Fan, K. Lv, Nanoscale 2010, 2, 2144.
[44] J. Pan, X. Wu, L. Wang, G. Liu, G. Q. M. Lu, H.-M. Cheng, Chemical Communications 2011, 47, 8361.
[45] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Gratzel, J. Am. Chem. Soc 1993, 115, 6382.
[46] M. K. Nazeeruddin, E. Baranoff, M. Grätzel, Solar Energy 2011, 85, 1172.
[47] A. Mishra, M. K. Fischer, P. Bäuerle, Angewandte Chemie International Edition 2009, 48, 2474.
[48] Y.-S. Yen, H. H. Chou, Y. C. Chen, C. Y. Hsu, J. T. Lin, Journal of Materials Chemistry 2012, 22, 8734.
[49] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Chemical reviews 2015, 115, 2136.
[50] F. Schiffmann, J. VandeVondele, J. Hutter, A. Urakawa, R. Wirz, A. Baiker, Proceedings of the National Academy of Sciences 2010, 107, 4830.
[51] J. N. Clifford, E. Palomares, M. K. Nazeeruddin, M. Grätzel, J. R. Durrant, The Journal of Physical Chemistry C 2007, 111, 6561.
[52] J. G. Rowley, B. H. Farnum, S. Ardo, G. J. Meyer, The Journal of Physical Chemistry Letters 2010, 1, 3132.
[53] T. Privalov, G. Boschloo, A. Hagfeldt, P. H. Svensson, L. Kloo, The Journal of Physical Chemistry C 2008, 113, 783.
[54] J. L. Lan, T. C. Wei, S. P. Feng, C. C. Wan, G. Cao, The Journal of Physical Chemistry C 2012, 116, 25727.
[55] B. A. Gregg, F. Pichot, S. Ferrere, C. L. Fields, The Journal of Physical Chemistry B 2001, 105, 1422.
[56] Y. Liu, A. Hagfeldt, X. R. Xiao, S. E. Lindquist, Solar Energy Materials Solar Cells 1998, 55, 267.
[57] M. Hubert, M. Dumont, J. Paquet, Chronobiology international 1998, 15, 59.
[58] P. Hasin, M. A. Alpuche-Aviles, Y. Wu, The Journal of Physical Chemistry C 2010, 114, 15857.
[59] J. Chae, D. Y. Kim, S. Kim, M. Kang, Journal of industrial and Engineering Chemistry 2010, 16, 906.
[60] T. Battumur, S. H. Mujawar, Q. Truong, S. B. Ambade, W. Lee, S.-H. Han, S.-H. Lee, Current Applied Physics 2012, 12, e49.
[61] http://www.semi.org/en/Standards/P_000787.
[62] https://www.jeita.or.jp/japanese/standard/book/ET-9101_J/.
[63] Y. S. Long, S. T. Hsu, T. C. Wu, "Capacitance effect from high to low level lighting by real-time one-sweep method for OPV device", presented at Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd, 2015.
[64] S. T. Hsu, Y. S. Long, T. C. Wu, M. A. Tsai, "Spectrum response measurement for organic photovoltaic and dye sensitized solar cell. Part II: Calculation and standardization", presented at Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd, 2016.
[65] J. Hohl‐Ebinger, W. Warta, Progress in Photovoltaics: Research and Applications 2011, 19, 573.
[66] F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, A. Hagfeldt, Solar Energy Materials and Solar Cells 2005, 87, 117.
[67] J. Bisquert, M. Grätzel, Q. Wang, F. Fabregat-Santiago, The Journal of Physical Chemistry B 2006, 110, 11284.
[68] J. Halme, Physical Chemistry Chemical Physics 2011, 13, 12435.
[69] Y. Li, K. Yoo, D.-K. Lee, J. Y. Kim, H. Kim, B. Kim, M. J. Ko, Nanoscale 2013, 5, 4711.
[70] M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, Journal of the American Chemical Society 2001, 123, 1613.
[71] P. R. Barnes, L. Liu, X. Li, A. Y. Anderson, H. Kisserwan, T. H. Ghaddar, J. R. Durrant, B. C. O’Regan, Nano letters 2009, 9, 3532.
[72] S. Ito, M. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Péchy, M. Jirousek, A. Kay, S. M. Zakeeruddin, M. Grätzel, Progress in photovoltaics: research and applications 2006, 14, 589.
[73] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Grätzel, Journal of the American Chemical Society 2005, 127, 16835.
[74] L. Liang, S. Dai, L. Hu, F. Kong, W. Xu, K. Wang, The Journal of Physical Chemistry B 2006, 110, 12404.
[75] J. Bisquert, The Journal of Physical Chemistry B 2002, 106, 325.
[76] J. J. Wu, G. R. Chen, C. C. Lu, W. T. Wu, J. S. Chen, Nanotechnology 2008, 19, 105702.
[77] M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda, The Journal of Physical Chemistry B 2006, 110, 13872.
[78] M. Ansari-Rad, Y. Abdi, E. Arzi, The Journal of Physical Chemistry C 2012, 116, 10867.
[79] K. Zhu, S.-R. Jang, A. J. Frank, The Journal of Physical Chemistry Letters 2011, 2, 1070.
[80] J. Bisquert, I. Mora-Seró, The Journal of Physical Chemistry Letters 2009, 1, 450.
[81] H. Wang, M. Liu, C. Yan, J. Bell, Beilstein journal of nanotechnology 2012, 3, 378.
[82] J. Li, D. Xu, Chemical Communications 2010, 46, 2301.
[83] N. Roy, Y. Sohn, D. Pradhan, ACS nano 2013, 7, 2532.
[84] P. Zhai, T. Y. Hsieh, C. Y. Yeh, K. S. K. Reddy, C. C. Hu, J. H. Su, T. C. Wei, S. P. Feng, Advanced Functional Materials 2015, 25, 6093.
[85] B. Liu, E. S. Aydil, Journal of the American Chemical Society 2009, 131, 3985.
[86] L. Bay, K. West, Solar energy materials and solar cells 2005, 87, 613.
[87] K. Zhu, N. R. Neale, A. Miedaner, A. J. Frank, Nano letters 2007, 7, 69.
[88] S. Lee, J. H. Noh, H. S. Han, D. K. Yim, D. H. Kim, J.-K. Lee, J. Y. Kim, H. S. Jung, K. S. Hong, The Journal of Physical Chemistry C 2009, 113, 6878.
[89] J. Gong, J. Liang, K. Sumathy, Renewable and Sustainable Energy Reviews 2012, 16, 5848.
[90] C. S. Kovash, J. D. Hoefelmeyer, B. A. Logue, Electrochimica Acta 2012, 67, 18.
[91] S. Ito, P. Liska, P. Comte, R. Charvet, P. Péchy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin, Chemical Communications 2005, 4351.
[92] M. S. Wu, C. H. Tsai, J. J. Jow, T. C. J. E. A. Wei, 2011, 56, 8906.
[93] K. I. Jang, E. Hong, J. H. Kim, Korean Journal of Chemical Engineering 2012, 29, 356.
[94] K. I. Jang, E. Hong, J. H. Kim, Korean Journal of Chemical Engineering 2013, 30, 620.
[95] K. I. Jang, E. Hong, J. H. Kim, Korean Journal of Chemical Engineering 2012, 29, 356.
[96] H. J. An, S. R. Jang, R. Vittal, J. Lee, K. J. Kim, Electrochimica Acta 2005, 50, 2713.
[97] F. Fabregat-Santiago, G. Garcia-Belmonte, J. Bisquert, A. Zaban, P. Salvador, The Journal of Physical Chemistry B 2002, 106, 334.
[98] F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, A. Hagfeldt, Solar Energy Materials Solar Cells 2005, 87, 117.
[99] A. Y. Anderson, P. R. Barnes, J. R. Durrant, B. C. O’Regan, The Journal of Physical Chemistry C 2011, 115, 2439.
[100] T. W. Hamann, J. W. Ondersma, Energy Environmental Science 2011, 4, 370.
[101] Y. Sun, A. C. Onicha, M. Myahkostupov, F. N. Castellano, ACS applied materials interfaces 2010, 2, 2039.