簡易檢索 / 詳目顯示

研究生: 林子皓
Lin, Zih-Hao
論文名稱: 應用工業3.5策略建構染機排程決策支援系統實證研究—以H公司為例
Apply Industry 3.5 Strategy to Develop Decision Support System for Production Scheduling in Dyeing Industry : An Empirical Study of Company H
指導教授: 簡禎富
Chien, Chen-Fu
口試委員: 吳吉政
Wu, Jei-Zheng
李家岩
Lee, Chia-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 42
中文關鍵詞: 工業3.5隱形冠軍染整機台排程決策支援系統
外文關鍵詞: Industry 3.5, Hidden Champions, Dyeing Machine Scheduling, Decision Support System
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前彈性生產需求日益增長,這意味著市場面向小批量和高差異性的大量客製化趨勢邁進,生產環境內之決策者包含管理階層、生產調度人員以及作業人員等族群將面臨大幅增加的頻繁作業變動。這樣的作業模式對於倚靠人力的製造產業可能使調度導致失誤的機會增加。因此近年來各國政府依據自身優勢部署不同的工業戰略,資訊化、物聯網、智慧製造等概念分別涵蓋在不同的戰略中,以應對即將到來的轉型挑戰。然本國許多製造工業已累積多年領域知識與管理經驗,因此本研究導入工業3.5之混合策略於台灣隱形冠軍紡織產業,改善染整工段機台調度作為實證研究,以提升對顧客訂單反應能力。本研究建構基於領域知識與智慧的決策模型,以產能利用最高為決策目標以及考慮調度限制,發展數學規劃來描述非等效平行染機之排程,並透過演算法實現數學模型,並建構加強可視化之決策支持系統,進而避免人為疏失的錯誤。
    本研究實證台灣染整業如何通過資訊化技術與管理之整合,提升作業效率與品質,如排程演算法大幅節省排程規劃時間並加大了涵蓋期長。以及開發之排程視覺化工具等,皆是透過管理與作業的資訊化加強競爭優勢,由基礎的作業層面推動智慧製造,作為製造工業推動智慧製造之範例。


    Since 2013, many countries propose their manufacturing strategy, such as Industry 4.0 of Germany, Industrial Internet of USA and Manufacturing 2025 of China. The governments among countries deploy the different strategies based on own advantage to confront the upcoming challenges. One of the challenge is the increasing growth of the needs of production flexibility which means the market is trending toward small-volume and large-variety to fulfill the needs of mass personalization. Therefore, the strategies above contain the concepts of informatization, internet of things and smart manufacturing. Decision makers, such as managers, production scheduling planners and operators, will face an increase number of frequent changes, and will increase the frequency of mistakes for scheduling. In this study, a flexible decision model with domain intelligence is proposed and a visualized decision support system to maximize profit and avoid the mistakes from violating constraints of scheduling is developed. The proposed flexible decision model and decision support system as realizing Industry 3.5 strategy are implemented in scheduling for fabric dyeing machines of a textile company in Taiwan. This study illustrates the possible solution and strategy for companies in Taiwan to strengthen their competitive advantage and accomplish flexible decision and smart production via integration of informative technology and management.

    目錄 .....................................i 表目錄 .....................................ii 圖目錄 .....................................iii 第一章 .....................................1 第二章 .....................................4 第三章 .....................................13 第四章 .....................................20 第五章 .....................................36 參考文獻 ...................................38

    中國國務院 (2015),中國製造2025,上網日期:2015年12月8日。
    巫佳宜 (2017),2016年台灣織布產業回顧與2017年展望,上網日期:2017年5月26日。
    李信宏 (2016),2015年-2016年臺灣染整業變化趨勢分析,上網日期:2016年8月9日。
    林東清 (2013),資訊管理: e 化企業的核心競爭能力,智勝文化,台北
    林則孟 (2012),生產計畫與管理,華泰文化,台北。
    林信惠 (2005),軟體專案管理,智勝文化,台北。
    林蒧均 (2015),淺談工業 4.0 浪潮下的國際製造業政策,經濟前瞻,162期,頁65-72。
    洪新原、梁定澎、張嘉銘 (2005),科技接受模式之彙總研究,資訊管理學報,12卷4期,頁211-234。
    經濟部技術處 (2012),2012產業技術白皮書,財團法人台灣經濟研究院,台北。
    閩潔 (2015),2015年台灣紡織產業回顧-原物料價格、進出口創匯、次產業表現,上網日期:2015年12月24日。
    賴士葆 (1994),生產與作業管理:理論與實務,華泰書局,台北。
    簡禎富 (2005),決策分析與管理,雙葉書廊,台北。
    簡禎富(2017),如何先打造出「工業3.5」的能力,哈佛商業評論,2017年4月號。
    簡禎富、林國義、許鉅秉、吳政鴻 (2016),台灣生產與作業管理之相關期刊文獻回顧與前瞻: 從工業 3.0 到工業 3.5,管理學報,33卷1期,頁87-103。
    嚴紀中、陳鴻基 (2002),管理資訊系統: 理論. 科技. 實務與應用,雙葉書廊,台北。
    Alter, S. (1977), “A taxonomy of decision support systems,” Sloan Management Review, Vol. 19, No. 1, pp. 39-56.
    Cawthon, N., & Moere, A. V. (2007), “The effect of aesthetic on the usability of data visualization,” Information Visualization, 2007. IV '07. 11th International Conference, doi: 10.1109/IV.2007.147.
    Chien, C. F., Hong, T. Y., & Guo, H. Z. (2017), “An empirical study for smart production for TFT-LCD to empower Industry 3.5,” Journal of the Chinese Institute of Engineers, Vol. 40, Issue. 7, pp.552-561.
    De Angeli, A., Sutcliffe, A., & Hartmann, J. (2006), “Interaction, usability and aesthetics: what influences users' preferences?,” Proceedings of the 6th conference on Designing Interactive systems, doi: 10.1145/1142405.1142446.
    Donovan, J. J., & Madnick, S. E. (1977), “Institutional and ad hoc DSS and their effective use,” ACM SIGMIS Database: the DATABASE for Advances in Information Systems, Vol. 8, Issue. 3, pp. 79-88.
    Gorry, G. A., & Scott Morton, M. S. (1971), “A framework for management information systems,” Sloan Management Review, pp. 55-70.
    Guo, Z. X., Wong, W. K., Leung, S. Y. S., Fan, J. T., & Chan, S. F. (2006), “Mathematical model and genetic optimization for the job shop scheduling problem in a mixed-and multi-product assembly environment: A case study based on the apparel industry,” Computers and Industrial Engineering, Vol. 50, Issue. 3, pp. 202-219.
    Keen, P. G. (1980), “Decision support systems: a research perspective,” Proceedings of an International Task Force Meeting, pp. 23-44.
    Hogue, J. T., & Watson, H. J. (1983), “Management's role in the approval and administration of decision support systems,” MIS Quarterly, Vol. 7, No.2, pp. 15-26.
    Hsu, H.-M., Hsiung, Y., Chen, Y.-Z., and Wu, M.-C. (2009), “A GA methodology for the scheduling of yarn-dyed textile production,” Expert Systems with Applications, Vol. 36, No. 10, pp. 12095-12103.
    Huynh, N. T., & Chien, C. F. (2018), “A hybrid multi-subpopulation genetic algorithm for textile batch dyeing scheduling and an empirical study,” Computers & Industrial Engineering, doi: 10.1016/j.cie.2018.01.005.
    Jiang, W., Yuan, Z., Bi, J., & Sun, L. (2010), “Conserving water by optimizing production schedules in the dyeing industry,” Journal of Cleaner Production, Vol. 18, Issue. 16-17, pp. 1696-1702.
    Kang, H. S., Lee, J. Y., Choi, S., Kim, H., Park, J. H., Son, J. Y., Kim, B. H., & Do Noh, S. (2016), “Smart manufacturing: Past research, present findings, and future directions,” International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 3, Issue. 1, pp. 111-128.
    Kuo, C. F. J., Shih, C. Y., Kao, C. Y., & Lee, J. Y. (2005), “Color and pattern analysis of printed fabric by an unsupervised clustering method,” Textile Research Journal, Vol. 75, Issue. 1, pp. 9-12.
    Laoboonlur, P., Hodgson, T. J., and Thoney, K. A. (2006), “Production scheduling in a knitted fabric dyeing and finishing process,” Journal of the Textile Institute, Vol. 97, No. 5, pp. 391-399.
    Pan, R., Gao, W., & Liu, J. (2009, May), “Color clustering analysis of yarn-dyed fabric in HSL color space”, Software Engineering, 2009. WCSE'09. WRI World Congress, Vol. 2, pp. 273-278.
    Rafael, R., Shirley, A. J., and Liveris, A. (2014), “Report To The President Accelerating US Advanced Manufacturing,” Report, Washington DC, US, Vol., No., pp.
    Rajkumar, R. R., Lee, I., Sha, L., & Stankovic, J. (2010), “Cyber-physical systems: the next computing revolution,” In Proceedings of the 47th design automation conference, pp. 731-736.
    Silva, C., & Magalhaes, J. M. (2006), “Heuristic lot size scheduling on unrelated parallel machines with applications in the textile industry,” Computers & Industrial Engineering, Vol. 50, Issue. 1-2, pp. 76-89.
    Spearman, M. L., & Zazanis, M. A. (1992), “Push and pull production systems: issues and comparisons,” Operations research, Vol. 40, Issue. 3, pp. 521-532.
    Sprague Jr, R. H. (1980), “A framework for the development of decision support systems,” MIS quarterly, Vol. 4, No. 4, pp. 1-26.
    Turban, E., Sharda, R., & Delen, D. (2011), Decision support and business intelligence systems, Pearson Education India.
    Venkatesh, V., & Davis, F. D. (2000), “A theoretical extension of the technology acceptance model: Four longitudinal field studies,” Management science, Vol. 46, Issue. 2, pp. 186-204.

    QR CODE