簡易檢索 / 詳目顯示

研究生: 周育如
Chou, Yu-Ru
論文名稱: 以天文光譜量測技術研究源自DG Tau A的低速風
A Spectroastrometric Study of the Low-velocity Wind from DG Tau A
指導教授: 賴詩萍
Lai, Shih-Ping
高見道弘
Takami, Michihiro
口試委員: 平野尚美
Hirano, Naomi
李景輝
Lee, Chin-Fei
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Institute of Astronomy
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 63
中文關鍵詞: 原行星盤觀測天文學盤面風噴流電漿診斷
外文關鍵詞: protoplanetary-disk, wind, jet, observation, diagnostics
相關次數: 點閱:66下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 可見光禁制線(optical forbidden line)的低速成分(low-velocity component,
    LVC, |v| < 100 km s−1)常被詮釋為原行星盤面風(protoplanetary disk wind)。
    原行星盤面風對於原行星盤消散具有潛在的影響力,而我們的目的在於藉由研究LVC理解原行星盤面風的物理性質。我們以Subaru-HDS觀測DG Tau A並取得了23條可見光禁制線([N I], [N II], [O I], [O II], [O III], [S II], [Ca II], [Fe II])的高解析度光譜(Δv ∼ 2.5 km s−1),其波長範圍為4800 Å至7500 Å,涵蓋3條容許譜線(permitted line;Hα, Hβ, He I)。而LVC則在[O I] 5577、6300、6364 Å、[S II] 6716、6731 Å譜線被觀測到。我們對於LVC的分析結果指出其可被分解為三個子成分:LVC-H、LVC-M和LVC-L。以上三個成分分別可解釋為紊流、廣角盤面風(wide-angled wind),以及上層盤面大氣(upper disk atmosphere)。我們以光譜天文量測技術(spectroastrometry)測出盤面風的長度為12-70 au,並估算出其質量流失率(wind mass-loss rate)之最低值為約10^−8 M⊙ yr−1。我們的觀測結果與現有的三種盤面風模型:光蒸發風(photoevaporative wind)、D-wind、X-wind模型之間的比較表明,需要嘗試組合不同模型並對其進行廣泛的模擬觀測(synthetic observation),以辨明盤
    面風的驅動機制。除了三個LVC之外,我們在全部26條譜線中皆鑑別出一或兩個高速成分(HVCs, |v| > 100 km s−1)。其中,在下游處的高速成分距離中心星約1",其密度約為10^4 cm−3,皆與過去的DG Tau A噴流之內部衝擊面(internal shock surface)研究結果相符。而靠近中心星的高速成分距離中心星約0".06 - 0".25,符合過去對於DG Tau A之駐震波(stationary shock)的觀測結果。


    Low-velocity components (LVCs, |v| < 100 km s−1) in optical forbidden line profiles are used as a proxy for protoplanetary disk winds. We aim to study the line properties of LVCs that potentially affect disk dispersal. Using Subaru-HDS, we obtained high spectral resolution spectra (Δv ∼ 2.5 km s−1) for DG Tau A and detected 23 optical forbidden lines ([N I], [N II], [O I], [O II], [O III], [S II], [Ca II], [Fe II]) from 4800 Å to 7500 Å and also three permitted lines (Hα, Hβ, He I). Among these lines, LVCs were observed in the [O I] 5577, 6300, 6364 Å, [S II] 6716, 6731 Å lines. Our analysis reveals that the LVCs can be divided into three subcomponents: LVC-H, LVC-M, and LVC-L. These components may trace turbulent gas, a wide-angled wind, and an upper disk atmosphere, respectively. With 12-70 au wind lengths measured using spectroastrometry, we estimate a lower limit to the wind mass-loss rate of ∼10^−8 M⊙ yr−1. Comparisons between our observation and available photoevaporative wind, D-wind, and X-wind models suggest the need for more extensive synthetic observations of combined wind models to identify the driving mechanism. In addition to the LVCs, we identified one or two high-velocity components (HVCs, |v| > 100 km s−1) associated with the collimated jet in all 26 lines. The one downstream (∼1", ne ∼10^4 cm−3) is associated with an internal shock surface, while the other at the base (0".06 - 0".25) may be a stationary shock component.

    Abstract (Chinese) I Abstract II Acknowledgements (Chinese) III Contents V List of Figures VII List of Tables XIII 1 Introduction 1 1.1 Disk winds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Wind launching mechanisms . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Previous observations of the winds . . . . . . . . . . . . . . . . . . 4 1.4 DG Tau A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Observations and Data Reduction 11 3 Results 14 3.1 Overview of the emission lines properties . . . . . . . . . . . . . . . 14 3.2 Major target lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4 Physical Conditions and Nature of Individual Emission Components 27 4.1 Calculations using ChiantiPy and Pyneb . . . . . . . . . . . . . . . 27 4.2 The origin of the HVCs . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3 The low-velocity components (LVCs) . . . . . . . . . . . . . . . . . 32 5 Driving Mechanism for the LVC-M Wind 40 5.1 Comparisons with the PE and D-wind models . . . . . . . . . . . . 40 5.1.1 PE wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.1.2 D-wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.1.3 PE + D-wind . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.1.4 PE wind with Lamppost Illumination . . . . . . . . . . . . . 43 5.2 Comparisons with the X-wind model . . . . . . . . . . . . . . . . . 44 6 Summary 46 Bibliography 49 A [O I] 5577 Å position spectra 57 B Search for the LVC in Other Emission Lines 59 B.1 [N I] 5200 Å . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 B.2 [Ca II] 7291 Å . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 B.3 [O III] 5007 Å . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 B.4 [O III] 4959 Å . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    Adams, F. C., Emerson, J. P., & Fuller, G. A. 1990, ApJ, 357, 606, doi: 10.1086/168949
    Agra-Amboage, V., Cabrit, S., Dougados, C., et al. 2014, A&A, 564, A11, doi: 10.1051/0004-6361/201220488
    Alexander, R., Pascucci, I., Andrews, S., Armitage, P., & Cieza, L. 2014, in Protostars and Planets VI, ed. H. Beuther, R. S. Klessen, C. P. Dullemond, & T. Henning, 475–496, doi: 10.2458/azu_uapress_9780816531240-ch021
    Andrews, S. M., Huang, J., Pérez, L. M., et al. 2018, The Astrophysical Journal Letters, 869, L41, doi: 10.3847/2041-8213/aaf741
    Bacciotti, F., & Eislöffel, J. 1999, A&A, 342, 717
    Bacciotti, F., Mundt, R., Ray, T. P., et al. 2000, ApJL, 537, L49, doi: 10.1086/312745
    Bailey, J. 1998a, MNRAS, 301, 161, doi: 10.1046/j.1365-8711.1998.02010.x
    Bailey, J. A. 1998b, in Society of Photo-Optical Instrumentation Engineers
    (SPIE) Conference Series, Vol. 3355, Optical Astronomical Instrumentation, ed.
    S. D’Odorico, 932–939, doi: 10.1117/12.316802
    Banzatti, A., Pascucci, I., Edwards, S., et al. 2019, ApJ, 870, 76, doi: 10.3847/1538-4357/aaf1aa
    Benisty, M., Dominik, C., Follette, K., et al. 2023, in Astronomical Society of the
    Pacific Conference Series, Vol. 534, Protostars and Planets VII, ed. S. Inutsuka,
    Y. Aikawa, T. Muto, K. Tomida, & M. Tamura, 605, doi: 10.48550/arXiv.
    2203.09991
    Blandford, R. D., & Payne, D. G. 1982, MNRAS, 199, 883
    Brannigan, E., Takami, M., Chrysostomou, A., & Bailey, J. 2006, MNRAS, 367, 315, doi: 10.1111/j.1365-2966.2005.09942.x
    Calvet, N., Hartmann, L., Kenyon, S. J., & Whitney, B. A. 1994, ApJ, 434, 330, doi: 10.1086/174731
    Däppen, W. 2000, Atoms and Molecules, ed. Cox, A. N., 27–+
    de Valon, A., Dougados, C., Cabrit, S., et al. 2020, A&A, 634, L12, doi: 10.1051/0004-6361/201936950
    Del Zanna, G., Dere, K. P., Young, P. R., & Landi, E. 2021, ApJ, 909, 38, doi: 10.3847/1538-4357/abd8ce
    Draine, B. T. 2003a, ApJ, 598, 1017, doi: 10.1086/379118—. 2003b, ApJ, 598, 1026, doi: 10.1086/379123
    Drążkowska, J., Bitsch, B., Lambrechts, M., et al. 2023, in Astronomical Society of the Pacific Conference Series, Vol. 534, Protostars and Planets VII, ed. S. Inutsuka, Y. Aikawa, T. Muto, K. Tomida, & M. Tamura, 717, doi: 10.48550/arXiv.2203.09759
    Eislöffel, J., Mundt, R., Ray, T. P., & Rodriguez, L. F. 2000, in Protostars and Planets IV, ed. V. Mannings, A. P. Boss, & S. S. Russell, 815
    Ercolano, B., Picogna, G., & Monsch, K. 2023, MNRAS, 526, L105, doi: 10.1093/mnrasl/slad123
    Fang, M., Pascucci, I., Edwards, S., et al. 2018, ApJ, 868, 28, doi: 10.3847/1538-4357/aae780
    Frank, A., Ray, T. P., Cabrit, S., et al. 2014, Protostars and Planets VI, 451, doi: 10.2458/azu_uapress_9780816531240-ch020
    Gaia Collaboration, Vallenari, A., Brown, A. G. A., et al. 2023, A&A, 674, A1, doi: 10.1051/0004-6361/202243940
    Gangi, M., Antoniucci, S., Biazzo, K., et al. 2022, A&A, 667, A124, doi: 10.1051/0004-6361/202244042
    Garufi, A., Podio, L., Codella, C., et al. 2022, A&A, 658, A104, doi: 10.1051/0004-6361/202141264
    Giannini, T., Nisini, B., Antoniucci, S., et al. 2019, A&A, 631, A44, doi: 10.1051/0004-6361/201936085
    Gorti, U., Hollenbach, D., Najita, J., & Pascucci, I. 2011, ApJ, 735, 90, doi: 10.1088/0004-637X/735/2/90
    Güdel, M., Audard, M., Bacciotti, F., et al. 2011, in Astronomical Society of the Pacific Conference Series, Vol. 448, 16th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, ed. C. Johns-Krull, M. K. Browning, & A. A. West, 617. https://arxiv.org/abs/1101.2780
    Güdel, M., Eibensteiner, C., Dionatos, O., et al. 2018, A&A, 620, L1, doi: 10.1051/0004-6361/201834271
    Gullbring, E., Calvet, N., Muzerolle, J., & Hartmann, L. 2000, ApJ, 544, 927, doi: 10.1086/317253
    Günther, H. M., Li, Z.-Y., & Schneider, P. C. 2014, ApJ, 795, 51, doi: 10.1088/0004-637X/795/1/51
    Hamann, F. 1994, ApJS, 93, 485, doi: 10.1086/192064
    Hartigan, P., Edwards, S., & Ghandour, L. 1995, ApJ, 452, 736, doi: 10.1086/176344
    Hartmann, L., Herczeg, G., & Calvet, N. 2016, ARA&A, 54, 135, doi: 10.1146/annurev-astro-081915-023347
    Hirth, G. A., Mundt, R., & Solf, J. 1997, A&AS, 126, 437, doi: 10.1051/aas: 1997275
    Hollenbach, D., & McKee, C. F. 1989, ApJ, 342, 306, doi: 10.1086/167595
    Kepner, J., Hartigan, P., Yang, C., & Strom, S. 1993, ApJL, 415, L119, doi: 10.1086/187047
    Königl, A., & Pudritz, R. E. 2000, Protostars and Planets IV, 759
    Kramida, A., Yu. Ralchenko, Reader, J., & and NIST ASD Team.
    2023, NIST Atomic Spectra Database (ver. 5.11), [Online]. Available:
    https://physics.nist.gov/asd [2024, May 12]. National Institute of Standards and Technology, Gaithersburg, MD.
    Lavalley, C., Cabrit, S., Dougados, C., Ferruit, P., & Bacon, R. 1997, A&A, 327, 671
    Lavalley-Fouquet, C., Cabrit, S., & Dougados, C. 2000, A&A, 356, L41
    Le Tiran, L., Lehnert, M. D., van Driel, W., Nesvadba, N. P. H., & Di Matteo, P.2011, A&A, 534, L4, doi: 10.1051/0004-6361/201117609
    Liu, H. B., Takami, M., Kudo, T., et al. 2016, Science Advances, 2, e1500875, doi: 10.1126/sciadv.1500875
    Louvet, F., Dougados, C., Cabrit, S., et al. 2018, A&A, 618, A120, doi: 10.1051/0004-6361/201731733
    Luridiana, V., Morisset, C., & Shaw, R. A. 2015, A&A, 573, A42, doi: 10.1051/0004-6361/201323152
    Milliner, K., Matthews, J. H., Long, K. S., & Hartmann, L. 2019, MNRAS, 483, 1663, doi: 10.1093/mnras/sty3197
    Miotello, A., Kamp, I., Birnstiel, T., Cleeves, L. C., & Kataoka, A. 2023, in Astronomical Society of the Pacific Conference Series, Vol. 534, Protostars and Planets VII, ed. S. Inutsuka, Y. Aikawa, T. Muto, K. Tomida, & M. Tamura, 501, doi: 10.48550/arXiv.2203.09818
    Najita, J. R., Edwards, S., Basri, G., & Carr, J. 2000, Protostars and Planets IV, 457
    Natta, A., Testi, L., Alcalá, J. M., et al. 2014, A&A, 569, A5, doi: 10.1051/0004-6361/201424136
    Nisini, B., Gangi, M., Giannini, T., et al. 2023, arXiv e-prints, arXiv:2312.10777, doi: 10.48550/arXiv.2312.10777
    Ogihara, M., Kokubo, Eiichiro, Suzuki, Takeru K., & Morbidelli, Alessandro. 2018, A&A, 615, A63, doi: 10.1051/0004-6361/201832720
    Pascucci, I., Cabrit, S., Edwards, S., et al. 2023, in Astronomical Society of the Pacific Conference Series, Vol. 534, Protostars and Planets VII, ed. S. Inutsuka, Y. Aikawa, T. Muto, K. Tomida, & M. Tamura, 567, doi: 10.48550/arXiv.2203.10068
    Picogna, G., Ercolano, B., Owen, J. E., & Weber, M. L. 2019, MNRAS, 487, 691, doi: 10.1093/mnras/stz1166
    Pinte, C., Teague, R., Flaherty, K., et al. 2023, in Astronomical Society of the Pacific Conference Series, Vol. 534, Protostars and Planets VII, ed. S. Inutsuka, Y. Aikawa, T. Muto, K. Tomida, & M. Tamura, 645, doi: 10.48550/arXiv.
    2203.09528
    Pyo, T.-S., Hayashi, M., Takami, M., & Beck, T. L. 2024, arXiv e-prints, arXiv:2401.08509, doi: 10.48550/arXiv.2401.08509
    Pyo, T.-S., Kobayashi, N., Hayashi, M., et al. 2003, ApJ, 590, 340, doi: 10.1086/374966
    Ray, T., Dougados, C., Bacciotti, F., Eislöffel, J., & Chrysostomou, A. 2007, Protostars and Planets V, 231
    Rigliaco, E., Pascucci, I., Gorti, U., Edwards, S., & Hollenbach, D. 2013, ApJ, 772, 60, doi: 10.1088/0004-637X/772/1/60
    Riols, A., Lesur, G., & Menard, F. 2020, A&A, 639, A95, doi: 10.1051/
    0004-6361/201937418
    Schneider, P. C., Günther, H. M., & Schmitt, J. H. M. M. 2011, A&A, 530, A123, doi: 10.1051/0004-6361/201016305
    Schneider, P. C., & Schmitt, J. H. M. M. 2008, A&A, 488, L13, doi: 10.1051/0004-6361:200810261
    Shang, H., Krasnopolsky, R., Liu, C.-F., & Wang, L.-Y. 2020, ApJ, 905, 116, doi: 10.3847/1538-4357/abbdb0
    Shang, H., Liu, C.-F., Krasnopolsky, R., & Wang, L.-Y. 2023, ApJ, 944, 230, doi: 10.3847/1538-4357/aca763
    Shu, F. H., Najita, J. R., Shang, H., & Li, Z. 2000, Protostars and Planets IV, 789
    Simon, M. N., Pascucci, I., Edwards, S., et al. 2016, ApJ, 831, 169, doi: 10.3847/0004-637X/831/2/169
    Stahler, S. W., & Palla, F. 2004, The Formation of Stars
    Takami, M., Bailey, J., Gledhill, T. M., Chrysostomou, A., & Hough, J. H. 2001, MNRAS, 323, 177, doi: 10.1046/j.1365-8711.2001.04172.x
    Takami, M., Chrysostomou, A., Bailey, J., et al. 2002, ApJL, 568, L53, doi: 10.1086/340277
    Takami, M., Karr, J. L., Koh, H., Chen, H., & Lee, H. 2010, ApJ, 720, 155, doi: 10.1088/0004-637X/720/1/155
    Takami, M., Günther, H. M., Schneider, P. C., et al. 2023, ApJS, 264, 1, doi: 10.3847/1538-4365/ac9afc
    Varga, J., Gabányi, K. É., Ábrahám, P., et al. 2017, A&A, 604, A84, doi: 10.1051/0004-6361/201630287
    Weber, M. L., Ercolano, B., Picogna, G., Hartmann, L., & Rodenkirch, P. J. 2020, MNRAS, 496, 223, doi: 10.1093/mnras/staa1549
    Whelan, E., & Garcia, P. 2008, in Jets from Young Stars II, ed. F. Bacciotti, L. Testi, & E. Whelan, Vol. 742, 123
    Whelan, E. T., Pascucci, I., Gorti, U., et al. 2021, ApJ, 913, 43, doi: 10.3847/1538-4357/abf55e
    White, M. C., Bicknell, G. V., McGregor, P. J., & Salmeron, R. 2014a, MNRAS, 442, 28, doi: 10.1093/mnras/stu788
    White, M. C., McGregor, P. J., Bicknell, G. V., Salmeron, R., & Beck, T. L. 2014b, MNRAS, 441, 1681, doi: 10.1093/mnras/stu654

    QR CODE