簡易檢索 / 詳目顯示

研究生: 蘇怡如
Yi-Ju Su
論文名稱: 單元製造系統中之相似度量測與聚類分析演算法
Similarity Measures and Clustering Algorithms in Cellular Manufacturing Systems
指導教授: 洪文良
Wen-Liang Hung
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 22
中文關鍵詞: 群組技術單元製造系統單元形成相似度相似性分類演算法群組效率
外文關鍵詞: Group technology (GT), Cellular manufacturing systems, Cell formation (CF), Similarity measures, Similarity-Based Robust Clustering Method(SCM), Grouping efficiency
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    單元式製造在批次製造過程中可以減少前置時間,為ㄧ有名的策略,其中最有名的方法是群集分析,也就是使用相似度和分群法,將相似特性的零件聚集起來,形成ㄧ零件家族。
    本文提出兩個相似度並結合Yang 與 Wu (2004) 所提出的SCM分群法,將機器和零件組成單元形成。根據數值模擬與資料,顯示:本文所提之相似度量測可以得到好的單元形成。


    Abstract
    Cellular manufacturing is a well-known strategy for reducing lead times in batch production systems. One of the well-known approaches is the cluster analysis method, which uses similarity measures and clustering methods to group similar parts into part families.
    In this study, we propose two similarity measures and apply a clustering algorithm, called Similarity-Based Robust Clustering Method (SCM) proposed by Yang and Wu (2004) , with cell formation in group technology. According to the result of real application examples, the proposed similarity measures perform well.

    1. Introduction------------------------------1 2. Related Work------------------------------2 3. The proposed similarity measures----------4 4. The robust clustering algorithm-A Similarity-Based Robust Clustering Method-----5 5. Machine-parts grouping in cellular manufacturing systems-----8 6. Conclusions-------------------------------21 7. References--------------------------------22

    [1] M.S. Yang, K.L. Wu, A similarity-based robust clustering method. IEEE Trans. Pattern
    Anal. Mach. Intell. 26 (2004) 434–448.
    [2] H.M. Selim, R.G. Askin, A.J. Vakharia, Cell formation in group technology:
    review evaluation and directions for future research. Computers and Industrial
    Engineering 34 (1998) 3–20.
    [3] Y. Yin, K. Yasuda, Similarity coefficient methods applied to the cell formation problem:
    A taxonomy and review. International Journal of Production Economics 101 (2006)
    329–352.
    [4] P. Jaccard, Nouvelles recherches sur la distribution florale. Bull. Soc. V aud. Sci. Nat.44
    (1908) 223–270.
    [5] C. T. Mosier, J. Yelle, and G. Walker, Survey of similarity coefficient based
    methods as applied to the group technology configuration problem. OMEGA,
    International Journal of Management Science 25(1997) 65–79.
    [6] K.M.S. Islam, B.R. Sarker, A similarity coefficient measure and machine-parts grouping
    in cellular manufacturing systems. International Journal of Production Research 38
    (2000) 699–720.
    [7] L.A. Zadeh, Similarity Relations and Fuzzy Orderings. Information Sciences. 3 (1971)
    177–200.
    [8]I.G. Jiang, L.C. Yeh, W.L. Hung and M.S. Yang, Data analysis on the extra-solar planets
    using robust clustering. Monthly Notices of the Royal Astronomical Society 370 (2006)
    1379-1392
    [9] W.L. Hung , M.S. Yang, E. S. Lee, Cell formation using fuzzy relational clustering
    algorithm. Mathematical and Computer Modelling 53 (2011) 1776–1787.

    [10] M.P. Chandrasekharan, R. Rajagopalan, An idea seed nonhierarchical algorithm for
    cellular manufacturing. International Journal of Production Research 24(1986a)
    451–464.
    [11] M.P. Chandrasekharan, R. Rajagopalan, MODROC: an extension to rank order clustering for group technology. International Journal of Production Research 24(1986b) 1221–1233.
    [12] M.S. Yang, W.L. Hung, F.C. Cheng, Mixed-variable fuzzy clustering approach to part
    family and machine cell formation for GT applications. International Journal of
    Production Economics 103 (2006) 185–198.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE