簡易檢索 / 詳目顯示

研究生: 蔡明忠
Ming-Chung Tsai
論文名稱: 多重量子態中的代數不變量
Algebraic Invariants of Multipartite Quantum States
指導教授: 許貞雄
Chen-Shiung Hsue
蘇正耀
Zheng-Yao Su
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 42
中文關鍵詞: 量子纏結多重量子態酉轉換
外文關鍵詞: combinatorial tracing, Schmidt decomposition, qubit
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在研究量子資訊的領域中,對於如何去分類、描述各種型式的量子態(quantum state),進一步地去了解何謂量子纏結(quantum entanglement),是近幾年來相當重要的課題。就數學問題的角度來看,我們必須去探討任意一個多重量子態(multipartite quantum states)系統在局域酉轉換(local unitary transformation)之下,如何藉由在這轉換之下的不變量描述這系統所表現出來的特性。因此我們在這篇論文中,提供一套明確的方法---combinatorial tracing,幫助我們找出所有所需要的不變量,並且探討這些不變量之間的關係,而這整個過程可以視為廣義的Schmidt分解。


    To characterize different types of quantum states is one of major inquiries in the area of quantum information. In this thesis a general scheme, combinatorial tracing, is developed, that enables the calculation of all the essential algebraic invariants for a quantum state. These invariants are considered registers or indexes that characterize an arbitrary, pure or mixed, multipartite quantum state. Specifically they provide the necessary and sufficient condition to determine whether two arbitrarily given states are equivalent up to local unitary transformations. This scheme is in practice a generalized
    Schmidt decomposition.

    Section1 Introduction.........................1 Section2 One-qubit system.....................3 Section3 Schmidt decomposition................6 Section4 Basic concept of invariant theory....8 Section5 Combnatorial Tracing................13 Section6 Hypermatrix representation..........16 Section7 Spinor representation...............21 Section8 Reduction...........................24 Section9 Conclusion..........................27 Reference....................................28 Appendix.....................................30

    P.W. Shor,Algorithms for quantum computation: discrete logarithms and factoring, in Proc. of 35$^{th}$ IEEE FOCS, 124,1994; quant-ph/9508027.

    L.K. Grover,A Fast Quantum Mechanical Algorithm for Database Search, Proc. 28$^th$ Annual ACM Symposium on the Theory of Computing, ACM Press, New York, 1996, pp212-219.

    C.H. Bennett, G. Brassard, C. Cr$\acute{e}$peau, R. Jozsa, A. Peres, W.Wootters, {\em Teleporting An Unknown Quantum State via Dual
    Classical and EPR Channels}, Phys. Rev. Lett., 70:1895-1899, 1993.

    C.H. Bennett, S.J. Wiesner, {\em Communication via One- and Two-particle Operators on Einstein-Podolsky-Rosen
    States}, Phys. Rev. Lett., 69:2881-2884, 1992.

    E. Schr\"{o}dinger, {\em Die gegenw\"{a}rtige Situation in der Quantenmechanik},
    Naturwissenschaften, 23:807, 823, and 844; 1935.

    E.M. Rains, {\em Polynomial Invariants of Quantum Codes}, 1997; quant-ph/9704042.

    N. Linden and S. Popescu, {\em On Multi-particle
    Entanglement}, Fortsch.Phys., 46:567-578, 1997; quant-ph/9711016.

    N. Linden, S. Popescu, and A. Sudbery, {\em Non-local Properties of Multi-particle Density
    Matrices}, Phys.Rev.Lett. 83:243-247, 1998; quant-ph/9801076.

    M. Grassl, M. Roetteler,
    and T. Beth, {\em Computing Local Invariants of Qubit Systems},
    Phys.Rev. A, 58:1833-1839, 1998; quant-ph/9712040.

    Y. Makhlin, {\em Nonlocal Properties of Two-qubit Gates and Mixed States and Optimization of Quantum
    Computations}Quant. Info. Proc. 1:243-252, 2002; quant-ph/0002045.

    H. Barnum and N. Linden, {\em Monotones and Invariants for Multi-particle Quantum
    States}, 2001; quant-ph/0103155.

    F. Verstraete, J. Dehaene, B. De
    Moor, and H. Verschelde, {\em Four qubits can be entangled in nine
    different ways}Phys. Rev. A, 65:052112, 2002; quant-ph/0109033.

    A. Miyake and F. Verstraete, {\em Multipartite Entanglement in $2\times2\times n$ Quantum
    Systems}Phys. Rev. A, 69:012101, 2004; quant-ph/0307067.

    A. Peres, {\em Quantum Theory: Concepts and Methods}, Kluwer,
    Dordrecht 1993, Chap. 5; A. Ekert and P.L. Knight, Am. J. Phys., {\bf 63}, 415, 1995.

    B. Sturmfels, {\em Algorithms in Invariant Theory},
    Springer-Verlag, New York, 1993.

    P.J. Olver, {\em Classical Invariant Theory},
    Cambridge University Press, 1999.

    Stephen H. Friedberg, Arnold J. Insel,
    and Lawrence E. Spence, {\em Linear Algebra}, Prentice-Hall, INC., 1997.

    D. Hilbert, {\em Theory of Algebraic
    Invariants}, English transltion, Cambridge University Press, 1993.

    K.O. Geddes, S.R. Czapor, and G. Labahn, {\em Algorithm for Computer Algebra}, Kluwer Academic
    Publishers, 1992.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE