研究生: |
蔡明忠 Ming-Chung Tsai |
---|---|
論文名稱: |
多重量子態中的代數不變量 Algebraic Invariants of Multipartite Quantum States |
指導教授: |
許貞雄
Chen-Shiung Hsue 蘇正耀 Zheng-Yao Su |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 英文 |
論文頁數: | 42 |
中文關鍵詞: | 量子纏結 、多重量子態 、酉轉換 |
外文關鍵詞: | combinatorial tracing, Schmidt decomposition, qubit |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在研究量子資訊的領域中,對於如何去分類、描述各種型式的量子態(quantum state),進一步地去了解何謂量子纏結(quantum entanglement),是近幾年來相當重要的課題。就數學問題的角度來看,我們必須去探討任意一個多重量子態(multipartite quantum states)系統在局域酉轉換(local unitary transformation)之下,如何藉由在這轉換之下的不變量描述這系統所表現出來的特性。因此我們在這篇論文中,提供一套明確的方法---combinatorial tracing,幫助我們找出所有所需要的不變量,並且探討這些不變量之間的關係,而這整個過程可以視為廣義的Schmidt分解。
To characterize different types of quantum states is one of major inquiries in the area of quantum information. In this thesis a general scheme, combinatorial tracing, is developed, that enables the calculation of all the essential algebraic invariants for a quantum state. These invariants are considered registers or indexes that characterize an arbitrary, pure or mixed, multipartite quantum state. Specifically they provide the necessary and sufficient condition to determine whether two arbitrarily given states are equivalent up to local unitary transformations. This scheme is in practice a generalized
Schmidt decomposition.
P.W. Shor,Algorithms for quantum computation: discrete logarithms and factoring, in Proc. of 35$^{th}$ IEEE FOCS, 124,1994; quant-ph/9508027.
L.K. Grover,A Fast Quantum Mechanical Algorithm for Database Search, Proc. 28$^th$ Annual ACM Symposium on the Theory of Computing, ACM Press, New York, 1996, pp212-219.
C.H. Bennett, G. Brassard, C. Cr$\acute{e}$peau, R. Jozsa, A. Peres, W.Wootters, {\em Teleporting An Unknown Quantum State via Dual
Classical and EPR Channels}, Phys. Rev. Lett., 70:1895-1899, 1993.
C.H. Bennett, S.J. Wiesner, {\em Communication via One- and Two-particle Operators on Einstein-Podolsky-Rosen
States}, Phys. Rev. Lett., 69:2881-2884, 1992.
E. Schr\"{o}dinger, {\em Die gegenw\"{a}rtige Situation in der Quantenmechanik},
Naturwissenschaften, 23:807, 823, and 844; 1935.
E.M. Rains, {\em Polynomial Invariants of Quantum Codes}, 1997; quant-ph/9704042.
N. Linden and S. Popescu, {\em On Multi-particle
Entanglement}, Fortsch.Phys., 46:567-578, 1997; quant-ph/9711016.
N. Linden, S. Popescu, and A. Sudbery, {\em Non-local Properties of Multi-particle Density
Matrices}, Phys.Rev.Lett. 83:243-247, 1998; quant-ph/9801076.
M. Grassl, M. Roetteler,
and T. Beth, {\em Computing Local Invariants of Qubit Systems},
Phys.Rev. A, 58:1833-1839, 1998; quant-ph/9712040.
Y. Makhlin, {\em Nonlocal Properties of Two-qubit Gates and Mixed States and Optimization of Quantum
Computations}Quant. Info. Proc. 1:243-252, 2002; quant-ph/0002045.
H. Barnum and N. Linden, {\em Monotones and Invariants for Multi-particle Quantum
States}, 2001; quant-ph/0103155.
F. Verstraete, J. Dehaene, B. De
Moor, and H. Verschelde, {\em Four qubits can be entangled in nine
different ways}Phys. Rev. A, 65:052112, 2002; quant-ph/0109033.
A. Miyake and F. Verstraete, {\em Multipartite Entanglement in $2\times2\times n$ Quantum
Systems}Phys. Rev. A, 69:012101, 2004; quant-ph/0307067.
A. Peres, {\em Quantum Theory: Concepts and Methods}, Kluwer,
Dordrecht 1993, Chap. 5; A. Ekert and P.L. Knight, Am. J. Phys., {\bf 63}, 415, 1995.
B. Sturmfels, {\em Algorithms in Invariant Theory},
Springer-Verlag, New York, 1993.
P.J. Olver, {\em Classical Invariant Theory},
Cambridge University Press, 1999.
Stephen H. Friedberg, Arnold J. Insel,
and Lawrence E. Spence, {\em Linear Algebra}, Prentice-Hall, INC., 1997.
D. Hilbert, {\em Theory of Algebraic
Invariants}, English transltion, Cambridge University Press, 1993.
K.O. Geddes, S.R. Czapor, and G. Labahn, {\em Algorithm for Computer Algebra}, Kluwer Academic
Publishers, 1992.