研究生: |
魏嘉彥 Wei, Chia-Yen |
---|---|
論文名稱: |
氧化鐵及聚四氟乙烯之矽氧烷複合材料於無線射頻辨識及電磁波屏蔽之應用 Fabrication of PDMS Based Composites with Fe2O3 and PTFE for RFID and Electromagnetic Wave Absorption |
指導教授: |
戴念華
Tai, Nyan-Hwa |
口試委員: |
嚴大任
Yen, Ta-Jen 葉孟考 Yeh, Meng-Kao |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 無線射頻辨識 、金屬表面 、電磁波屏蔽 、矽氧烷基複合材料 、氧化鐵 、聚四氟乙烯 |
外文關鍵詞: | Radiofrequency identification, Metal surface, Electromagnetic interference shielding, Polydimethylsiloxane base composites, Iron oxide, Polytetrafluoroethene |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中,我們製備了一種輕薄可撓性雙層複合材料,利用其吸收電磁波的能力,改善無線射頻辨識(RFID)置於金屬上方失效的問題。材料選擇上,以聚二甲基矽氧烷(PDMS)為基材,利用其加工方便且易於成形的特性,透過混和三氧化二鐵(Fe2O3)以及聚四氟乙烯(PTFE),分別製成兩種複合材料,利用Fe2O3層對電磁波的吸收,以及PTFE作為介電層,來阻絕吸收層對RFID晶片的干擾。此外我們使用化學法製備了氧化石墨烯(GO)粉末混和於Fe2O3粉末,在較低的粉末添加量上,增進其效益。電磁波進入PDMS複合材料後,首先是接觸第一層的PTFE,電磁波會受到較少的干擾進入第二層Fe2O3層,在經由Fe2O3層吸收部分電磁波的效應下,大幅減少被金屬表面反射影響的RFID訊號接收與發送,在50 wt% PTFE/PDMS複合材料加上70 wt% Fe2O3/PDMS複合材料的組合,原本被干擾的RFID晶片可由一分鐘讀取0次增強至一分鐘讀取289次。
In this work, we prepared a thin, flexible, double-layer composite material to lower the interference of the metal substrate to the radio frequency identification (RFID) placed on it through the absorption electromagnetic waves. Polydimethylsiloxane (PDMS) is used as the base material to prepare the layered composites with the structure of PTFE+PDMS/Fe2O3+PDMS. (Fe2O3+PDMS) layer is used to absorb electromagnetic waves and (PTFE+PDMS) layer is to create a gap between Fe2O3 layer and RFID tag. In addition, we used chemical methods to prepare graphene oxide (GO) powder which was mixed with Fe2O3 powder to increase the performance of the composites at a lower powder loading. While the electromagnetic wave enters the layered composite material, it contacts the first layer, that is the PTFE+PDMS layer, where the electromagnetic wave will receive less interference and enter the second layer of Fe2O3. Electromagnetic wave is partially absorbed by the second layer, as a result, reduce the intensity of the electromagnetic wave impinging on the metal surface, which increase the signal transfer between the RFID tag and reader. With the combination of 50 wt% PTFE composite material and 70 wt% Fe2O3 composite material, the originally interfered RFID chip can be enhanced to 289 reads per minute from nothing.
[1] Y. Wang, C. Yan, S.-Y. Cheng, Z.Q. Xu, X. Sun, Y.H. Xu, J.J. Chen, Z. Jiang, K. Liang, Z.S. Feng, Flexible RFID tag metal antenna on paper-based substrate by inkjet printing technology, Advanced Functional Materials (29), 2019, p. 1902579.
[2] R. Want, An introduction to RFID technology, IEEE Pervasive Computing 5(1), 2006, pp. 25-33.
[3] H. Zhu, S. Lai, H. Dai, Solutions of metal surface effect for HF RFID systems, 2007 International Conference on Wireless Communications, Networking and Mobile Computing, 2007, pp. 2089-2092.
[4] W.J. Yoon, S.H. Chung, S.J. Lee, Implementation and performance evaluation of an active RFID system for fast tag collection, Computer Communications 31(17), 2008, pp. 4107-4116.
[5] J. Zhu, Z. Li, Analysis of magnetic shielding effect on an RFID coil antenna in metallic environments with a ferrite toroid, IEEE Transactions on Electromagnetic Compatibility 62(6), 2020, pp. 2613-2620.
[6] Tashi, M.S. Hasan, H. Yu, Design, simulation, prototyping and experimentation of planar micro-strip patch antenna for passive UHF RFID to tag for metallic objects, 2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA), 2016, pp. 243-249.
[7] S. Gupta, N.H. Tai, Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band, Carbon (152), 2019, pp. 159-187.
[8] K. Zhao, S. Gupta, C. Chang, J. Wei, N.H. Tai, Layered composites composed of multi-walled carbon nanotubes/manganese dioxide/carbon fiber cloth for microwave absorption in the X-band, Royal Society of Chemistry Advances 9(33), 2019, pp. 19217-19225.
[9] S. Gupta, C. Chang, A.K. Anbalagan, C.H. Lee, N.H. Tai, Reduced graphene oxide/zinc oxide coated wearable electrically conductive cotton textile for high microwave absorption, Composites Science and Technology (188), 2020, p. 107994.
[10] K. Y. Chen, S. Gupta, N. H. Tai, Reduced graphene oxide/Fe2O3 hollow microspheres coated sponges for flexible electromagnetic interference shielding composites, Composites Communications (23), 2021, p. 100572
[11] C. Wang, V. Murugadoss, J. Kong, Z. He, X. Mai, Q. Shao, Y. Chen, L. Guo, C. Liu, S. Angaiah, Z. Guo, Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding, Carbon (140), 2018, pp. 696-733.
[12] Y. J. Chen, Y. A. Li, M. Yip, N. H. Tai, Electromagnetic interference shielding efficiency of polyaniline composites filled with graphene decorated with metallic nanoparticles, Composites Science and Technology (80), 2013, pp. 80-86.
[13] D. K. Cheng, Field and Wave Electromagnetics, Second edition, 1989, Pearson, United States
[14] W. L. Song, M. S. Cao, M. M. Lu, S. Bi, C. Y. Wang, J. Liu, J. Yuan, L. Z. Fan, Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding, Carbon (66), 2014, pp. 67-76
[15] M. H. Al-Saleh, U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites, Carbon (47), 2009, pp. 1738-1746
[16] David J. Griffiths, Introduction to electrodynamics, Fourth edition, 2014, Pearson, United States
[17] H. T. Liu, Y. Liu, B. S. Wang, C. S. Li, Microwave absorption properties of polyester composites incorporated with heterostructure nanofillers with carbon nanotubes as carriers, Chinese Physics Letters 32(4), 2015, p. 044102.
[18] T. Wang, Y. Li, L. Wang, C. Liu, S. Geng, X. Jia, F. Yang, L. Zhang, L. Liu, B. You, X. Ren, H. Yang, Synthesis of graphene/α-Fe2O3 composites with excellent electromagnetic wave absorption properties, Royal Society of Chemistry Advances 5(74), 2015, pp. 60114-60120.
[19] S. Gupta, S.K. Sharma, D. Pradhan, N. H. Tai, Ultra-light 3D reduced graphene oxide aerogels decorated with cobalt ferrite and zinc oxide perform excellent electromagnetic interference shielding effectiveness, Composites Part A: Applied Science and Manufacturing (123), 2019, pp. 232-241.
[20] D.G.R. William D. Callister, Materials science and engineering: An Introduction, Seventh Edition, 2007, John Wiley & Sons Inc., United States
[21] H. M. Kim, K. Kim, C. Y. Lee, and J. Joo, Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst, Applied Physics Letters(84), 2004, pp. 589-591
[22] C. Y. Huang, C. C. Wu, The EMI shielding effectiveness of PC/ABS/nickel-coated-carbon-fibre composites, European Polymer Journal(36), 2000, pp. 2729-2737
[23] Y. J. Yim, K. Y. Rhee, S. J. Park, Electromagnetic interference shielding effectiveness of nickel-plated MWCNTs/high-density polyethylene composites, Composites Part B: Engineering (98), 2016, pp. 120-125
[24] B. Shen, Y. Li, D. Yi, W. Zhai, X. C. Wei, W. Zheng, Microcellular graphene foam for improved broadband electromagnetic interference shielding, Carbon(102), 2016, pp. 154-160
[25] B. Shen, W. Zhai, W. Zheng, Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding, Advanced Functional Materials(24), 2014, pp. 4542-4548
[26] J. Lee, Y. Liu, Y. Liu, S. J. Park, M. Park, H. Y. Kim, Ultrahigh electromagnetic interference shielding performance of lightweight, flexible, and highly conductive copper-clad carbon fiber nonwoven fabrics, Journal of Materials Chemistry C, 2017, pp. 7853-7861
[27] Y. J. Wan, P. L. Zhu, S. H. Yu, R. Sun, C. P. Wong, W. H. Liao, Graphene paper for exceptional EMI shielding performance using large-sized graphene oxide sheets and doping strategy, Carbon, 2017, pp. 74-81
[28] P. Yin, L. Zhang, Y. Wang, H. Rao, Y. Wang, J. Wang, X. Feng, Y. Tang, J. Dai, H. Cheng, Combination of pumpkin-derived biochar with nickel ferrite/FeNi3 toward low frequency electromagnetic absorption, Journal of Materials Science: Materials in Electronics, 2020
[29] S. Acharya, J. Ray, T. U. Patro, P. Alegaonkar, S. Datar, Microwave absorption properties of reduced graphene oxide strontium hexaferrite/poly(methyl methacrylate) composites, Nanotechnology, 2018, p. 115605
[30] H. Lv, Y. Guo, Z. Yang, Y. Cheng, L.P. Wang, B. Zhang, Y. Zhao, Z.J. Xu, G. Ji, A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials, Journal of Materials Chemistry C 5(3), 2017, pp. 491-512.
[31] H. Lv, X. Liang, Y. Cheng, H. Zhang, D. Tang, B. Zhang, G. Ji, Y. Du, Coin-like alpha-Fe2O3@CoFe2O4 core-shell composites with excellent electromagnetic absorption performance, ACS Applied Materials & Interfaces 7(8), 2015, pp. 4744-4750.
[32] H. Wu, G. Wu, L. Wang, Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties, Powder Technology(269), 2015, pp. 443-451.
[33] H. Zhang, A. Xie, C. Wang, H. Wang, Y. Shen, X. Tian, Novel rGO/α-Fe2O3 composite hydrogel: synthesis, characterization and high performance of electromagnetic wave absorption, Journal of Materials Chemistry A 1(30), 2013, pp. 8547-8552.
[34] Y. Chen, X. Liu, X. Mao, Q. Zhuang, Z. Xie, Z. Han, γ-Fe2O3–MWNT/poly(p-phenylenebenzobisoxazole) composites with excellent microwave absorption performance and thermal stability, Nanoscale 6(12), 2014, pp. 6440-6447.
[35] Daniel M. Dobkin and Steven M. Weigand, Environmental effects on RFID tag antennas, IEEE MTT-S International Microwave Symposium, 2005, pp. 135-138
[36] K. V. S. Rao, Sander F. Lam, Pavel V. Nikitin, UHF RFID tag for metal containers, Proceedings of Asia-Pacific Microwave Conference, 2010, pp. 179-182
[37] M. Kim, K. Kim, Automated RFID-Based identification system for steel coils, Progress In Electromagnetics Research(131), 2012, pp. 1-17
[38] J.T. Prothro, G.D. Durgin, J.D. Griffin, The effects of a metal ground plane on RFID tag antennas, IEEE Antennas and Propagation Society International Symposium, 2006, pp. 3241-3244
[39] L. F. Mo, H. J. Zhang, RFID antenna near the surface of metal, IEEE International Symposium on Microwave, Antenna, Propagation, and EMC Technologies For Wireless Communications, 2007, pp. 803-806
[40] Y. Zhang, X. Wang, M. Cao, Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption, Nano Research 11(3), 2018, pp. 1426-1436.
[41] V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P.V. Parimi, X. Zuo, C.E. Patton, M. Abe, O. Acher, C. Vittoria, Recent advances in processing and applications of microwave ferrites, Journal of Magnetism and Magnetic Materials 321(14), 2009, pp. 2035-2047.
[42] M. H. Ullah, M.T. Islam, A compact square loop patch antenna on high dielectric
ceramic–PTFE composite material, Applied Physics A(113), 2013, pp. 185-193
[43] A. I. Petrariu, V. Popa, Analysis and design of a long range PTFE substrate UHF RFID tag for cargo container identification, Journal of Electrical Engineering(67), 2016, pp. 42-47
[44] A. A. Babar, T. Björninen,V. A. Bhagavati, L. Sydänheimo, P. Kallio, L. Ukkonen, Small and flexible metal mountable passive UHF RFID tag on high-dielectric polymer-ceramic composite substrate, IEEE Antennas and Wireless Propagation Letters(67), 2012, pp. 1319-1322
[45] M. Y. Li, S. Gupta, C. Chang, N. H. Tai, Layered hybrid composites using multi-walled carbon nanotube film as reflection layer and multi-walled carbon nanotubes/neodymium magnet/ epoxy as absorption layer perform selective electromagnetic interference shielding, Composites Part B: Engineering(161), 2019, pp. 617-626
[46] S. Gupta, C. Chang, C. H. Lai, N. H. Tai, Hybrid composite mats composed of amorphous carbon, zinc oxide nanorods and nickel zinc ferrite for tunable electromagnetic interference shielding, Composites Part B: Engineering(164), 2019, pp. 447-457
[47] C. C. Huang, S. Gupta, C. Y. Lo, N. H. Tai, Highly transparent and excellent electromagnetic interference shielding hybrid films composed of sliver-grid/(silver nanowires and reduced graphene oxide), Materials Letters (253), 2019, pp. 152-155
[48] 汪建民主編, 材料分析(第二版), 2014, 中國材料科學學會, 新竹