簡易檢索 / 詳目顯示

研究生: 吳昱璁
Yu-Tsung Wu
論文名稱: 利用脈衝雷射直寫技術成長奈米碳管
Carbon Nanotube Growth by Pulse Laser Direct-writing Techniques
指導教授: 游萃蓉
Tri-Rung Yew
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 46
中文關鍵詞: 準分子雷射非晶型碳膜奈米碳管
外文關鍵詞: excimer laser, amorphous carbon, carbon nanotube
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以氟化氪準分子脈衝雷射(KrF excimer laser),對含鎳催化劑於底部之非晶型碳膜(amorphous carbon)照射,使非晶型碳膜經由鎳催化劑產生相變(phase transformation),進而成長奈米碳管(carbon nanotube)。本研究中,藉由改變雷射能量密度、雷射照射時間、雷射照射頻率、及非晶型碳膜厚度,探討以雷射直寫方式成長奈米碳管材料之可行性。
    經由各項分析發現,在適當的合成條件下,能成功地利用此方式成長奈米碳管。此外,由本研究中發現,適當的雷射能量密度與非晶型碳膜厚度之組合為決定奈米碳管成長之主要參數。
    本研究進一步利用此雷射直寫技術,將奈米碳管成長於9 □m 之連接窗(via)中,由奈米碳管接窗之電流-電壓(I-V curve)量測,得知此奈米碳管接窗具有Ohmic特性,即金屬導體之性質。


    This work presents the formation of carbon nanotubes (CNTs) by direct-writing techniques using KrF excimer pulse laser. The pulse laser energy was applied to irradiate amorphous carbon (a-C) with Ni catalyst underneath for the transformation of carbon species into CNTs.
    After various calibrations and analyses, it was found that CNTs could be synthesized successfully by this approach under proper conditions. On the other hand, it was also found an appropriate combination of pulse laser intensity and combined and a-C thickness is the key parameter to determine CNT growth.
    In this work, CNTs were further grown in 9 μm via-pad using laser direct writing with I-V curve showing the ohmic behavior and metallic characteristics of CNT via-pad.

    誌謝 3 摘要 5 ABSTRACT 6 第一章 文獻回顧 7 1.1 奈米碳管 7 1.1-1奈米碳管之結構與電性 7 1.1-2奈米碳管連線 9 1.1-3奈米碳管之合成方法與比較 9 1.2準分子雷射 11 第二章 實驗動機 12 第三章 實驗與分析 13 3.1實驗步驟 13 3.1-1試片準備 13 3.1-2雷射系統 14 3.1-3合成奈米碳管 14 3.2分析及量測儀器 16 3.2-1掃描式電子顯微鏡 16 3.2-2拉曼光譜 17 3.2-3穿透式電子顯微鏡 19 3.2-4 電性量測儀器 20 第四章 結果與討論 21 4.1 利用600 nm厚之非晶型碳膜成長奈米碳管 21 4.1-1雷射照射頻率對試片石墨化之影響 22 4.1-2雷射照射時間對試片結晶性之影響 24 4.1-3雷射照射能量密度對試片石墨化之影響 26 4.2非晶型碳膜厚度對成長奈米碳管之影響 29 4.3 利用30 nm厚之非晶形碳膜成長奈米碳管 32 4.4 利用雷射直寫技術成長奈米碳管之可能機制 36 4.5所合成奈米碳管之電性量測 38 第五章 結論 40 參考文獻 41

    [1] S. Iijima, Nature 354, 56 (1991)
    [2] Z. Yao, C. L. Kane, and C. Dekker, Phys. Rev. Lett. 84, 2491 (2000)
    [3] J. Hone, M. Whitney, and A. Zettle, Synthetic Metals 103, 2489 (1999)
    [4] V. Vinciguerra, F. Buonocore, G. Panzera, and L. Occhipinti, Nanotechnology 14, 655-660 (2003)
    [5] S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, Science 280,                        1744-1746 (1998)
    [6] B. Q. Wei, R.Vajtai, and P. M. Ajayan, Appl. Phys. Lett. 79, 1172-1174 (2001)
    [7] P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Phys. Rev. Lett. 87, 215502-1-4 (2001)
    [8] M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of    Fullerences & Carbon Nanotubes San Diego, Academic Press (1996)

    [9] International Interconnect Technology Conference, IITC 2004, sponsored by IEEE, San Francisco, June 6-9 (2004)
    [10] M. Nihei, M. Horibe, A. Kawabata, and Y. Awano, Simulation Formation of Multiwall Carbon Nanotubes and their End-Bonded Ohmic Contacts to Ti Electrodes for Future ULSI Interconnects, Japanese Journal of Applied Physics, Vol. 43, No. 4B, 1856-1859 (2004)
    [11] M. Nihei, M. Horibe, A. Kawabata, and Y. Awano, Carbon Nanotube for Future LSI Interconnects, IITC 2004, 251-253 (2004)
    [12] M. Nihei, M. Horibe, A. Kawabata, and Y. Awano, Japanese Journal of Applied Physics 64, 6499-6502 (2004)
    [13] F. Kreupl, A.P. Graham, G.S. Duesberg, W. Steinhol, M. Liebau, E. Unger, and W. Honlein, Carbon Nanotubes in Interconnect Applications, Microelectronic Engineering 64, 399-408 (2002)

    [14] G. S. Duesberg, A. P. Graham, F. Kreupl, M. Ilea, R. Seidel, E. Unger, and W. Honlein, Ways towards the Scaleable Integration of Carbon Nanotubes into Silicon Based Technology, Diamond and Related Materials 13, 354-361 (2004)
    [15] S. Iijima, and T. Ichihashi, Nature 363, 603 (1993)
    [16] X. Sun, W. Bao, Yongkang Lv, J. Deng, and X. Wang, Materials Letters 61, 3956-3958 (2007)
    [17] C. Journet, W. K. Master, P. Bernier, A. Loiseau, M. L. D I. Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, Nature 388, 756 (1997)
    [18] A. Thess, R. Lee, P. Nikdaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomaken, J. E. Fisher, and R. E. Smalley, Science 273, 483 (1996)
    [19] Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, Science 282, 1105 (1998)
    [20] S. Tamir and Y. Drezner, Applied Surface Science 252, 4819-4823 (2006)
      [21] S. Zhu, C.H. Su, J. C. Cochrane, S. Lehoczky, I. Muntele, and D. Ila, Diamond and Related Materials 10, 1190-1194 (2001)
    [22] G. Radhakrishnan, P. M. Adams, and L. S. Bernstein, Applied Surface Science 253, 7651-7655 (2007)
    [23] M. Yudasaka, T Komatsu, T. Ichihashi, and S. Iijima, Chemical Physics Letters 278, 102-106 (1997)
    [24] H. Zhang, Y. Ding, C. Wu, Y. Chen, Y. Zhu, Y. He, and S. Zhong, Physics B 325, 224-229 (2003)
    [25] A. P. Bolshakov, S. A. Uglov, A. V. Saveliev, V. I. Konov, A. A. Gorbunov, W. Pompe, and A. Graff, Diamond and Related Materials 11, 927-930 (2002)
      [26] S. Fan, M. G. Chaplin, N. R. Franklin, T.W. Tombler, A. M. Cassell, and H. Dia, Science 283, 512 (1991)
    [27] C. Bower, O. Zhou, W. Zhu, D. J. Werder, and S. Jin, Appl. Phys. Lett. 77, 2767 (2000)
    [28] Y. Zhang, T. Ichihashi, E. Landree, F. Nihey, and S. Ijima, Science 285, 1719 (1999)
    [29] C. Du and N. Pan, Materials Letters 59, 1678-1682 (2005)
    [30] Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, Science 282, 1105 (1998)
    [31] C. M. Hsu, C. H. Lin, H. L Chang, and C. T. Kuo, Thin Solid Films 420-421, 225-229 (2002)
    [32] W. Zhu, D. J. Werder, and S. Jin, Applied Physics Letters 77, (2000)
    [33] N. A. Kiselev, J. L. Hutchison, A. P. Moravsky, E. V. Rakova, E. V. Dreval, C. J. D. Hetherington, D. N. Zakharov, J. Sloan, and R. O. Loutfy, Carbon 42, 149-161 (2004)
    [34] Materials and Processes in Manufacturing
    [35] 雷射之發生及其應用, 陳建銘
    [36] 準分子雷射加工特性與加工機規格, 王述宜
    [37] S. Botti, L. S. Asilyan, R. Ciardi, F. Fabbri, S. Loreti, A. Santoni, and S. Orlanducci, Chemical Physics Letters 396, 1-5 (2004)
    [38] S. Botti, R. Ciardi, L. Asilyan, L. De Dominicis, F. Fabbri, S. Orlanducci, and A. Fiori, Chemical Physics Letters 400, 264-267 (2004)
    [39] Raman Spectroscopy, Szymanski
    [40] Fourier Transform Raman Spectroscopy, Patrick Hendra, Catherine Jones, and Gavin Warnes
    [41] P. D. Kichambare, L. C. Chen, C. T. Wang, K. J. Ma, C. T. Wu, and K. H. Chen, Materials Chemistry and Physics 72, 218-222 (2001)
    [42] Elements of X-Ray Diffraction, Cullity Stock
    [43] N. D. Gupta, C. longeaud, P. Chaudhuri, A. Bhaduri, and S. Vignoli, Journal of Non-crystalline Solids 352, 1307-1309 (2006)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE