簡易檢索 / 詳目顯示

研究生: 李元瀚
LI, Yuan-Han
論文名稱: 以鋁、銦為中心金屬之孔洞材料合成與性質研究
Syntheses and Properties of Aluminum- and Indium-Based Porous Material
指導教授: 王素蘭
Wang, Sue-Lein
口試委員: 黃喧益
Huang, Hsuan-Yi
呂光烈
Lu, Kuang-Lieh
林嘉和
Lin, Chia-Her
柯寶燦
Ko, Bao-Tsan
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 241
中文關鍵詞: 金屬有機骨架化合物氣體吸附水熱合成
外文關鍵詞: Metal organic framework, Gas adsorption, Hydrothermal Synthesis
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文包含6個化合物的合成、結構與性質研究,其中4個為以In原子為中心金屬的二維MOFs孔洞材料,2個為以Al原子為中心金屬的MOFs孔洞材料。所有化合物的晶體結構皆以單晶X光繞射儀收集數據後進行結構解析,以粉末X光繞射圖譜比對理論圖譜確定樣品純度後,再進行氣體吸附與光學性質的測量。依照不同的金屬中心、結構相關性可分為A、B兩個系統討論:
    系統A中,有別於MOFs中常以三維的孔洞材料進行氣體吸附或選擇性的研究,本論文合成出4個二維的MOFs結構(A1-A4),其中A1與A2具有氣體選擇性,這是在過文獻中以In原子為中心金屬的MOFs未曾見到的結果,為第一個具有氣體選擇性的二維MOFs孔洞材料。而化合物A4也具有良好的二氧化碳固定化的效果,其轉化率可達到98%。
    系統B改以Al3+為中心金屬,分別合成出具有不同維度的MOFs材料,及結構鑑定利用粉墨X光繞射做結構解析。其中CAU8-ODB為一個三維的孔洞材料,由CAU8-ODB進行高壓CO2 與CH4的吸附實驗顯示出CAU8-ODB具有非常好的高壓CH4的特性,有別於文獻必需設計特殊官能基才能具有良好的吸附性質,CAU8-ODB僅以市售可得的有機官能基便可具有良好的吸附性,是文獻中少見的。


    The synthesis, structural characterization, and gas sorption and catalytic properties of six novel compounds are included in this thesis. Among them, four are Indium metal-organic frameworks, two are Aluminum metal-organic frameworks. The crystal structures and chemical formulas for all compounds were determined primarily by single-crystal and powder X-ray diffraction analysis. Based on correlations between synthesis and structure, these ten compounds are grouped into A and B systems for discussion.
    System A consists of four compounds: (Me2NH2)[In(SBA)2] (1) ,(Me2NH2)[In(SBA)(BDC)] (2), (Me2NH2)[In(SBA)(BDC- NH2)] (3), and (NH4)3[In3Cl2(BPDC)5] (4), (H2SBA = 4,4'-sulfonyldibenzoic acid; H2BDC= 1,4-benzenedicarboxylic acid; H2BDC-NH2 =2-amino-1,4-benzenedicarboxylic acid;H2BPDC = 4,4'-biphenyldicarboxylic acid) have been synthesized under solvothermal reaction conditions for compound 1 to 3 and DES (deep eutectic solvent) reaction for compound 4. The structure of these MOFs has been determined by usingsingle crystal X-ray diffraction study and theses four 2D monolayer framework withporous properties.The N2 gas sorption measurements indicated that Brunauer–Emmer–Teller(BET) and Langmuir surface areas of compound 1 are 207 and 301 m2 g-1respectively which is probably the first one having substantial gas uptake properties in the entire 2D In-MOFs family to date. Furthermore, these new indium MOFs on the addition of n-Bu4NBr were active for the cycloaddition of CO2 and propylene oxide, generating propylene carbonates in high conversions under mild conditions. Particularly, the most active MOF 4 was found to efficiently couple CO2 with a series of terminal epoxides to give the corresponding cyclic organic carbonates with high selectivities.
    System B presents two are Aluminum metal-organic frameworks. [Al(HODB)(OH)] and [Al(ODB)(OH)]. Both of the [Al(HODB)(OH)] structure and [Al(ODB)(OH)] was refined from powder X-ray diffraction data, A thorough characterization shows that the [Al(ODB)(OH)] is stable up to 350 °C in air, almost independent of the linker molecules incorporated. The former MOFs are porous toward N2 and CO2. The compound [Al(ODB)(OH)] not only has the selectivity for CO2/N2 but also have the high pressure CO2 and CH4 adsorption properties.

    第一章 緒論 1-1簡介 1 1-2論文研究目標與成果摘要 12 1-3合成方法簡介 15 1-4藥品一覽表 19 1-5鑑定方法 21 1-6參考文獻 46 第二章 具微孔性質之以銦為中心金屬之二維金屬有機骨架化合物之二氧化碳捕捉與催化性質研究 2-1簡介 48 2-2實驗合成方法 57 2-3化合物的鑑定與結構描述 61 2-4結果與討論 92 2-5結論 102 2-6參考文獻 104 第三章 以鋁為中心金屬之孔洞材料之高壓氣體吸附性質研究 3-1簡介 108 3-2實驗合成方法 116 3-3化合物的鑑定與結構描述 118 3-4結果與討論 145 3-5結論 152 3-6參考文獻 153 第四章 總結 156 附錄一:A、B系列的晶體數據列表 附錄二:研究所期間發表的論文

    CH 1
    1. J. M. Thomas, R. Raja, G. Sankar and R. G. Bell, Nature, 1999, 398, 227.
    2. D.W.Breck, Zeolite Molecular Sieves: Structure, Chemistry, and Use D. W. Breck (Union Carbide Corporation, Tarrytown, New York) John Wiley and Sons, New York, London, Sydney, and Toronto. 1974. 771 pp. $11.95, 1974.
    3. R. D. Miller, Science, 1999, 286, 421-423.
    4. T. J. Meurig, Angew. Chem. Int. Ed., 1999, 38, 3588-3628.
    5. M. E. Davis, Nature, 2002, 417, 813.
    6. M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe and O. M. Yaghi, Science, 2002, 295, 469-472.
    7. P. M. Forster, J. Eckert, J.-S. Chang, S.-E. Park, G. Férey and A. K. Cheetham, J. Am. Chem. Soc., 2003, 125, 1309-1312.
    8. K. Susumu, K. Ryo and N. Shin-ichiro, Angew. Chem. Int. Ed., 2004, 43, 2334-2375.
    9. R. Murugavel, A. Choudhury, M. G. Walawalkar, R. Pothiraja and C. N. R. Rao, Chem. Rev., 2008, 108, 3549-3655.
    10. S. M. Kuznicki, V. A. Bell, S. Nair, H. W. Hillhouse, R. M. Jacubinas, C. M. Braunbarth, B. H. Toby and M. Tsapatsis, Nature, 2001, 412, 720.
    11. A. J. Celestian, J. B. Parise, C. Goodell, A. Tripathi and J. Hanson, Chem. Mater., 2004, 16, 2244-2254.
    12. H. K. Chae, D. Y. Siberio-Pérez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M. O'Keeffe and O. M. Yaghi, Nature, 2004, 427, 523.
    13. A. F. Cronstedt, Rön och beskrifning om en obekant bärg art, som kallas Zeolites, 1756.
    14. S. Merlino, Mineralogical Magazine, 1988, 52, 377-387.
    15. J. Bujdák and H. Slosiariková, J. Therm. Anal., 1994, 41, 825-831.
    16. G. Yadav and M. M. Rahuman, Organic process research & development, 2002, 6, 706-713.
    17. J. C. Grunlan, A. Grigorian, C. B. Hamilton and A. R. Mehrabi, J. Appl. Polym. Sci., 2004, 93, 1102-1109.
    18. R. M. Barrer, Journal of the Chemical Society (Resumed), 1948, DOI: 10.1039/JR9480000127, 127-132.
    19. S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan and E. M. Flanigen, Journal of the American Chemical Society, 1982, 104, 1146-1147.
    20. M. E. Davis, C. Saldarriaga, C. Montes, J. Garces and C. Crowdert, Nature, 1988, 331, 698.
    21. P. B. Moore and J. Shen, Nature, 1983, 306, 356.
    22. M. Estermann, L. McCusker, C. Baerlocher, A. Merrouche and H. Kessler, Nature, 1991, 352, 320.
    23. Q. Huo, R. Xu, S. Li, Z. Ma, J. M. Thomas, R. H. Jones and A. M. Chippindale, J. Chem. Soc., Chem. Commun., 1992, DOI: 10.1039/C39920000875, 875-876.
    24. Y. Zhou, H. Zhu, Z. Chen, M. Chen, Y. Xu, H. Zhang and D. Zhao, Angew. Chem., 2001, 113, 2224-2226.
    25. T. Takei, K. Sekijima, D. Wang, N. Kumada and N. Kinomura, Solid State Ionics, 2004, 170, 111-115.
    26. V. Zima, L. Beneš, K. Melánová and M. Vlček, J. Solid State Chem., 2002, 163, 281-285.
    27. A. Espina, F. Menéndez, E. Jaimez, S. Khainakov, C. Trobajo, J. Garcıa and J. Rodrı́guez, Mater. Res. Bull., 1998, 33, 763-771.
    28. L. Peng, J. Yu, J. Li, Y. Li and R. Xu, Chem. Mater., 2005, 17, 2101-2107.
    29. J. Plévert, T. M. Gentz, A. Laine, H. Li, V. G. Young, O. M. Yaghi and M. O'Keeffe, J. Am. Chem. Soc., 2001, 123, 12706-12707.
    30. H. Li, M. Eddaoudi, M. O'Keeffe and O. M. Yaghi, nature, 1999, 402, 276.
    31. L. J. Murray, M. Dincă and J. R. Long, Chem. Soc. Rev., 2009, 38, 1294-1314.
    32. S. S. Han, J. L. Mendoza-Cortés and W. A. Goddard Iii, Chem. Soc. Rev., 2009, 38, 1460-1476.
    33. J.-R. Li, R. J. Kuppler and H.-C. Zhou, Chem. Soc. Rev., 2009, 38, 1477-1504.
    34. M. Allendorf, Chem. Soc. Rev., 2009, 38, 1330.
    35. D. Maspoch, D. Ruiz-Molina and J. Veciana, Chem. Soc. Rev., 2007, 36, 770-818.
    36. H.-Y. Lin, C.-Y. Chin, H.-L. Huang, W.-Y. Huang, M.-J. Sie, L.-H. Huang, Y.-H. Lee, C.-H. Lin, K.-H. Lii, X. Bu and S.-L. Wang, Science, 2013, DOI: 10.1126/science.1232097.
    37. A. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger and O. M. Yaghi, Science, 2005, 310, 1166-1170.
    38. K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe and O. M. Yaghi, Proceedings of the National Academy of Sciences, 2006, 103, 10186-10191.
    39. B. Wang, A. P. Côté, H. Furukawa, M. O’Keeffe and O. M. Yaghi, Nature, 2008, 453, 207.
    40. H. Wang, B. Li, H. Wu, T.-L. Hu, Z. Yao, W. Zhou, S. Xiang and B. Chen, J. Am. Chem. Soc., 2015, 137, 9963-9970.
    41. W. Yang, A. Greenaway, X. Lin, R. Matsuda, A. J. Blake, C. Wilson, W. Lewis, P. Hubberstey, S. Kitagawa, N. R. Champness and M. Schröder, J. Am. Chem. Soc., 2010, 132, 14457-14469.
    42. 王素蘭, 科儀新知, 民國九十四年二月第二十六卷第四期.
    43. G. Sheldrick, Bruker-Axs: Madison, WI, 1998.
    44. A. L. Spek, Acta Crystallographica Section C: Structural Chemistry, 2015, 71, 9-18.
    45. C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. v. d. Streek and P. A. Wood, J. Appl. Crystallogr., 2008, 41, 466-470.

    CH2
    1. S. Choi, J. H. Drese and C. W. Jones, ChemSusChem, 2009, 2, 796-854.
    2. A. Goeppert, M. Czaun, J.-P. Jones, G. S. Prakash and G. A. Olah, Chem. Soc. Rev., 2014, 43, 7995-8048.
    3. N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'keeffe and O. M. Yaghi, Science, 2003, 300, 1127-1129.
    4. R. J. L. C. and Y. O. M., Angew. Chem. Int. Ed., 2005, 44, 4670-4679.
    5. L. J. Murray, M. Dinca and J. R. Long, Chem. Soc. Rev., 2009, 38, 1294-1314.
    6. B. Youn‐Sang and S. R. Q., Angew. Chem. Int. Ed., 2011, 50, 11586-11596.
    7. G. Ferey, C. Serre, T. Devic, G. Maurin, H. Jobic, P. L. Llewellyn, G. De Weireld, A. Vimont, M. Daturi and J.-S. Chang, Chem. Soc. Rev., 2011, 40, 550-562.
    8. J.-R. Li, Y. Ma, M. C. McCarthy, J. Sculley, J. Yu, H.-K. Jeong, P. B. Balbuena and H.-C. Zhou, Coord. Chem. Rev., 2011, 255, 1791-1823.
    9. S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan and E. M. Flanigen, J. Am. Chem. Soc., 1982, 104, 1146-1147.
    10. M. E. Davis, C. Saldarriaga, C. Montes, J. Garces and C. Crowdert, Nature, 1988, 331, 698.
    11. C.-H. Lin, S.-L. Wang and K.-H. Lii, J. Am. Chem. Soc., 2001, 123, 4649-4650.
    12. X. Zou, T. Conradsson, M. Klingstedt, M. S. Dadachov and M. O'Keeffe, Nature, 2005, 437, 716.
    13. J. Sun, C. Bonneau, Á. Cantín, A. Corma, M. J. Díaz-Cabañas, M. Moliner, D. Zhang, M. Li and X. Zou, Nature, 2009, 458, 1154.
    14. S. S.-Y. Chui, S. M.-F. Lo, J. P. H. Charmant, A. G. Orpen and I. D. Williams, Science, 1999, 283, 1148-1150.
    15. H. Li, M. Eddaoudi, M. O'Keeffe and O. M. Yaghi, Nature, 1999, 402, 276.
    16. W. Chen and C. Wu, Dalton Trans, 2018, 47, 2114-2133.
    17. W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park, J. Park, J. Tian, M. Zhang, Q. Zhang, T. Gentle Iii, M. Bosch and H.-C. Zhou, Chem. Soc. Rev., 2014, 43, 5561-5593.
    18. Z. Lin, F. Jiang, L. Chen, D. Yuan and M. Hong, Inorg. Chem., 2005, 44, 73-76.
    19. Z. Zhelev, R. Bakalova, I. Aoki, K.-i. Matsumoto, V. Gadjeva, K. Anzai and I. Kanno, Chem. Commun., 2009, DOI: 10.1039/B816878D, 53-55.
    20. Y. Liu, V. C. Kravtsov, D. A. Beauchamp, J. F. Eubank and M. Eddaoudi, J. Am. Chem. Soc., 2005, 127, 7266-7267.
    21. Y. Liu, J. F. Eubank, A. J. Cairns, J. Eckert, V. C. Kravtsov, R. Luebke and M. Eddaoudi, Angew. Chem. Int. Ed., 2007, 46, 3278-3283.
    22. S.-T. Zheng, T. Wu, C. Chou, A. Fuhr, P. Feng and X. Bu, J. Am. Chem. Soc., 2012, 134, 4517-4520.
    23. S.-T. Zheng, J. J. Bu, T. Wu, C. Chou, P. Feng and X. Bu, Angew. Chem. Int. Ed., 2011, 50, 8858-8862.
    24. L. M. Aguirre-Díaz, D. Reinares-Fisac, M. Iglesias, E. Gutiérrez-Puebla, F. Gándara, N. Snejko and M. Á. Monge, Coord. Chem. Rev., 2017, 335, 1-27.
    25. T. Panda, T. Kundu and R. Banerjee, Chem. Commun., 2013, 49, 6197-6199.
    26. X. Zhao, C. Mao, X. Bu and P. Feng, Chem. Mater., 2014, 26, 2492-2495.
    27. Z. Tian, T. Song, Y. Fan, S. Shi and L. Wang, Inorg. Chim. Acta, 2007, 360, 3424-3430.
    28. F. Gándara, B. Gomez-Lor, E. Gutiérrez-Puebla, M. Iglesias, M. A. Monge, D. M. Proserpio and N. Snejko, Chem. Mater., 2008, 20, 72-76.
    29. L. M. Aguirre-Diaz, M. Iglesias, N. Snejko, E. Gutierrez-Puebla and M. A. Monge, CrystEngComm, 2013, 15, 9562-9571.
    30. C.-Y. Wu, D. S. Raja, C.-C. Yang, C.-T. Yeh, Y.-R. Chen, C.-Y. Li, B.-T. Ko and C.-H. Lin, CrystEngComm, 2014, 16, 9308-9319.
    31. C.-T. Yeh, W.-C. Lin, S.-H. Lo, C.-C. Kao, C.-H. Lin and C.-C. Yang, CrystEngComm, 2012, 14, 1219-1222.
    32. N. Reimer, H. Reinsch, A. K. Inge and N. Stock, Inorg. Chem., 2015, 54, 492-501.
    33. L. M. Aguirre-Díaz, F. Gándara, M. Iglesias, N. Snejko, E. Gutiérrez-Puebla and M. Á. Monge, J. Am. Chem. Soc., 2015, 137, 6132-6135.
    34. L. M. Aguirre-Díaz, M. Iglesias, N. Snejko, E. Gutiérrez-Puebla and M. Á. Monge, Chem. Eur. J., 2016, 22, 6654-6665.
    35. E. R. Cooper, C. D. Andrews, P. S. Wheatley, P. B. Webb, P. Wormald and R. E. Morris, Nature, 2004, 430, 1012.
    36. P. E. R., D. E. A., W. P. S., S. A. M. Z. and M. R. E., Angew. Chem. Int. Ed., 2006, 45, 4962-4966.
    37. D. E. A., W. D. S., P. E. R., W. P. S., S. A. M. Z., W. J. E. and M. R. E., Angew. Chem. Int. Ed., 2007, 46, 7839-7843.
    38. L. Lei, L. Yang, W. Haibo, D. Mei, W. Jianguo, S. A. M. Z., L. Jinping, D. Jinxiang and M. R. E., Angew. Chem. Int. Ed., 2009, 48, 2206-2209.
    39. L. Liu, D. S. Wragg, H. Zhang, Y. Kong, P. J. Byrne, T. J. Prior, J. E. Warren, Z. Lin, J. Dong and R. E. Morris, Dalton Trans, 2009, DOI: 10.1039/B906934H, 6715-6718.
    40. Z. Lin, D. S. Wragg, P. Lightfoot and R. E. Morris, Dalton Trans, 2009, DOI: 10.1039/B904450G, 5287-5289.
    41. A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed and V. Tambyrajah, Chem. Commun., 2003, DOI: 10.1039/B210714G, 70-71.
    42. A. P. Abbott, D. Boothby, G. Capper, D. L. Davies and R. K. Rasheed, J. Am. Chem. Soc., 2004, 126, 9142-9147.
    43. A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed and P. Shikotra, Inorg. Chem., 2005, 44, 6497-6499.
    44. Z. Jian, W. Tao, C. Shumei, F. Pingyun and B. Xianhui, Angew. Chem. Int. Ed., 2009, 48, 3486-3490.
    45. J. Zhang, S. Chen and X. Bu, Angewandte Chemie (International ed. in English), 2008, 47, 5434-5437.
    46. S. Chen, J. Zhang and X. Bu, Inorg. Chem., 2008, 47, 5567-5569.
    47. S. Chen, J. Zhang, T. Wu, P. Feng and X. Bu, J. Am. Chem. Soc., 2009, 131, 16027-16029.
    48. P.-C. Jhang, Y.-C. Yang, Y.-C. Lai, W.-R. Liu and S.-L. Wang, Angew. Chem., 2009, 121, 756-759.
    49. S. Chen, J. Zhang, T. Wu, P. Feng and X. Bu, Dalton Trans, 2010, 39, 697-699.
    50. P.-C. Jhang, N.-T. Chuang and S.-L. Wang, Angew. Chem. Int. Ed., 2010, 49, 4200-4204.
    51. Q. Zhang, K. De Oliveira Vigier, S. Royer and F. Jerome, Chem. Soc. Rev., 2012, 41, 7108-7146.
    52. A. Spek, J. Appl. Crystallogr., 2003, 36, 7-13.
    53. M.-L. Tong, X.-M. Chen, B.-H. Ye and S. W. Ng, Inorg. Chem., 1998, 37, 5278-5281.
    54. S. Zang, Y. Su, Y. Li, H. Zhu and Q. Meng, Inorg. Chem., 2006, 45, 2972-2978.
    55. L. Pan, M. B. Sander, X. Huang, J. Li, M. Smith, E. Bittner, B. Bockrath and J. K. Johnson, J. Am. Chem. Soc., 2004, 126, 1308-1309.
    56. J. G. Taylor, N. Whittall and K. K. Hii, Chem. Commun., 2005, DOI: 10.1039/B509933A, 5103-5105.
    57. W. Xin‐Long, Q. Chao, W. En‐Bo, L. Yang‐Guang, S. Zhong‐Min, X. Lin and C. Lucia, Angew. Chem. Int. Ed., 2005, 44, 5824-5827.
    58. W. Xin‐Long, Q. Chao, W. En‐Bo and S. Zhong‐Min, Chem. Eur. J., 2006, 12, 2680-2691.
    59. R. Bertoncello, M. Bettinelli, M. Casarin, A. Gulino, E. Tondello and A. Vittadini, Inorg. Chem., 1992, 31, 1558-1565.
    60. C. Xiao‐Ming and L. Gao‐Feng, Chem. Eur. J., 2002, 8, 4811-4817.
    61. D. Sun, R. Cao, Y. Sun, W. Bi, X. Li, Y. Wang, Q. Shi and X. Li, Inorg. Chem., 2003, 42, 7512-7518.
    62. A. M. Plonka, D. Banerjee, W. R. Woerner, Z. Zhang, N. Nijem, Y. J. Chabal, J. Li and J. B. Parise, Angew. Chem. Int. Ed., 2013, 52, 1692-1695.
    63. T.-H. Bae, M. R. Hudson, J. A. Mason, W. L. Queen, J. J. Dutton, K. Sumida, K. J. Micklash, S. S. Kaye, C. M. Brown and J. R. Long, Energy Environ. Sci, 2013, 6, 128-138.
    64. J. Song, Z. Zhang, S. Hu, T. Wu, T. Jiang and B. Han, Green Chem., 2009, 11, 1031-1036.
    65. R. Babu, R. Roshan, Y. Gim, Y. H. Jang, J. F. Kurisingal, D. W. Kim and D.-W. Park, J. Mater. Chem. A, 2017, 5, 15961-15969.
    66. P.-Z. Li, X.-J. Wang, J. Liu, J. S. Lim, R. Zou and Y. Zhao, J. Am. Chem. Soc., 2016, 138, 2142-2145.
    67. O. V. Zalomaeva, A. M. Chibiryaev, K. A. Kovalenko, O. A. Kholdeeva, B. S. Balzhinimaev and V. P. Fedin, J. Catal., 2013, 298, 179-185.
    68. A. C. Kathalikkattil, D.-W. Kim, J. Tharun, H.-G. Soek, R. Roshan and D.-W. Park, Green Chem., 2014, 16, 1607-1616.
    69. D. Feng, W.-C. Chung, Z. Wei, Z.-Y. Gu, H.-L. Jiang, Y.-P. Chen, D. J. Darensbourg and H.-C. Zhou, J. Am. Chem. Soc., 2013, 135, 17105-17110.
    70. M. H. Beyzavi, R. C. Klet, S. Tussupbayev, J. Borycz, N. A. Vermeulen, C. J. Cramer, J. F. Stoddart, J. T. Hupp and O. K. Farha, J. Am. Chem. Soc., 2014, 136, 15861-15864.
    71. W. Y. Gao, Y. Chen, Y. Niu, K. Williams, L. Cash, P. J. Perez, L. Wojtas, J. Cai, Y. S. Chen and S. Ma, Angew. Chem. Int. Ed., 2014, 53, 2615-2619.
    72. W.-Y. Gao, L. Wojtas and S. Ma, Chem. Commun., 2014, 50, 5316-5318.
    73. A. C. Kathalikkattil, R. Babu, R. K. Roshan, H. Lee, H. Kim, J. Tharun, E. Suresh and D.-W. Park, J. Mater. Chem. A, 2015, 3, 22636-22647.
    74. Y. Ren, X. Cheng, S. Yang, C. Qi, H. Jiang and Q. Mao, Dalton Trans, 2013, 42, 9930-9937.
    75. S.-H. Lo, D. S. Raja, C.-W. Chen, Y.-H. Kang, J.-J. Chen and C.-H. Lin, Dalton Trans, 2016, 45, 9565-9573.
    76. R. Babu, R. Roshan, A. C. Kathalikkattil, D. W. Kim and D.-W. Park, ACS Appl. Mater. Interfaces, 2016, 8, 33723-33731.
    77. M. H. Beyzavi, C. J. Stephenson, Y. Liu, O. Karagiaridi, J. T. Hupp and O. K. Farha, Frontiers in Energy Research, 2015, 2.
    78. J. Kim, S.-N. Kim, H.-G. Jang, G. Seo and W.-S. Ahn, Applied Catalysis A: General, 2013, 453, 175-180.
    79. L. Tristan, C. Céline and F. David, ChemCatChem, 2012, 4, 1725-1728.
    80. A. Otero, J. Martinez, J. Fernandez-Baeza, L. F. Sanchez-Barba, J. A. Castro-Osma and A. Lara-Sanchez, ChemSusChem, 2017.
    81. Z. Zhao, J. Qin, C. Zhang, Y. Wang, D. Yuan and Y. Yao, Inorg. Chem., 2017, 56, 4568-4575.
    82. C.-Y. Li, Y.-C. Su, C.-H. Lin, H.-Y. Huang, C.-Y. Tsai, T.-Y. Lee and B.-T. Ko, Dalton Trans, 2017, 46, 15399-15406.

    CH3
    1. Energy Information Administration, Offical Energy Statistics from the U.S Government, International Energy Annual2005.
    2. M. J. v. Setten, M. A. Uijttewaal, G. A. d. Wijs and R. A. d. Groot, Nature, 2001, 410, 63-64.
    3. A. Celzard and V. Fierro, Energy & fuels, 2005, 19, 573-583.
    4. U. Eberle, M. Felderhoff and F. Schueth, Angew. Chem. Int. Ed., 2009, 48, 6608-6630.
    5. H. Li, M. Eddaoudi, M. O'Keeffe and O. M. Yaghi, Nature, 1999, 402, 276.
    6. S. Kitagawa, R. Kitaura and S. i. Noro, Angew. Chem. Int. Ed., 2004, 43, 2334-2375.
    7. R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R. V. Belosludov, T. C. Kobayashi, H. Sakamoto, T. Chiba, M. Takata and Y. Kawazoe, Nature, 2005, 436, 238.
    8. A. R. Millward and O. M. Yaghi, J. Am. Chem. Soc., 2005, 127, 17998-17999.
    9. G. Férey, Chem. Soc. Rev., 2008, 37, 191-214.
    10. R. E. Morris and P. S. Wheatley, Angew. Chem. Int. Ed., 2008, 47, 4966-4981.
    11. A. U. Czaja, N. Trukhan and U. Müller, Chem. Soc. Rev., 2009, 38, 1284-1293.
    12. B. Chen, S. Xiang and G. Qian, Acc. Chem. Res., 2010, 43, 1115-1124.
    13. H.-C. Zhou, J. R. Long and O. M. Yaghi, Journal, 2012.
    14. K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae and J. R. Long, Chem. Rev., 2011, 112, 724-781.
    15. J.-R. Li, J. Sculley and H.-C. Zhou, Chem. Rev., 2011, 112, 869-932.
    16. H. Furukawa and O. M. Yaghi, J. Am. Chem. Soc., 2009, 131, 8875-8883.
    17. M. Dincă and J. R. Long, Angew. Chem. Int. Ed., 2008, 47, 6766-6779.
    18. L. J. Murray, M. Dincă and J. R. Long, Chem. Soc. Rev., 2009, 38, 1294-1314.
    19. M. P. Suh, H. J. Park, T. K. Prasad and D.-W. Lim, Chem. Rev., 2011, 112, 782-835.
    20. M. Kondo, T. Yoshitomi, H. Matsuzaka, S. Kitagawa and K. Seki, Angewandte Chemie International Edition in English, 1997, 36, 1725-1727.
    21. M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'keeffe and O. M. Yaghi, Science, 2002, 295, 469-472.
    22. T. Düren, L. Sarkisov, O. M. Yaghi and R. Q. Snurr, Langmuir, 2004, 20, 2683-2689.
    23. W. Zhou, The Chemical Record, 2010, 10, 200-204.
    24. R. B. Getman, Y.-S. Bae, C. E. Wilmer and R. Q. Snurr, Chem. Rev., 2012, 112, 703-723.
    25. K. Konstas, T. Osl, Y. Yang, M. Batten, N. Burke, A. J. Hill and M. R. Hill, J. Mater. Chem., 2012, 22, 16698-16708.
    26. T. A. Makal, J.-R. Li, W. Lu and H.-C. Zhou, Chem. Soc. Rev., 2012, 41, 7761-7779.
    27. Y. He, W. Zhou, R. Krishna and B. Chen, Chem. Commun., 2012, 48, 11813-11831.
    28. C. E. Wilmer, M. Leaf, C. Y. Lee, O. K. Farha, B. G. Hauser, J. T. Hupp and R. Q. Snurr, Nature Chemistry, 2011, 4, 83.
    29. T. Y. Shvareva, S. Skanthakumar, L. Soderholm, A. Clearfield and T. E. Albrecht-Schmitt, Chem. Mater., 2007, 19, 132-134.
    30. J. Cai, X. Rao, Y. He, J. Yu, C. Wu, W. Zhou, T. Yildirim, B. Chen and G. Qian, Chem. Commun., 2014, 50, 1552-1554.
    31. F. Gándara, H. Furukawa, S. Lee and O. M. Yaghi, J. Am. Chem. Soc., 2014, 136, 5271-5274.
    32. J. A. Mason, M. Veenstra and J. R. Long, Chem. Sci, 2014, 5, 32-51.
    33. L. Thierry, S. Christian, H. Clarisse, F. Gerhard, T. Francis, H. Marc, B. Thierry and F. Gérard, Chem. Eur. J., 2004, 10, 1373-1382.
    34. I. Senkovska, F. Hoffmann, M. Fröba, J. Getzschmann, W. Böhlmann and S. Kaskel, Microporous Mesoporous Mater., 2009, 122, 93-98.
    35. S. Biswas, T. Ahnfeldt and N. Stock, Inorg. Chem., 2011, 50, 9518-9526.
    36. A. Comotti, S. Bracco, P. Sozzani, S. Horike, R. Matsuda, J. Chen, M. Takata, Y. Kubota and S. Kitagawa, J. Am. Chem. Soc., 2008, 130, 13664-13672.
    37. N. Reimer, B. Gil, B. Marszalek and N. Stock, CrystEngComm, 2012, 14, 4119-4125.
    38. H. Reinsch, M. Feyand, T. Ahnfeldt and N. Stock, Dalton Trans, 2012, 41, 4164-4171.
    39. H. Reinsch, M. Krüger, J. Marrot and N. Stock, Inorg. Chem., 2013, 52, 1854-1859.
    40. Z. Jin, H.-Y. Zhao, X.-J. Zhao, Q.-R. Fang, J. R. Long and G.-S. Zhu, Chem. Commun., 2010, 46, 8612-8614.

    QR CODE