研究生: |
郭柏賢 Kuo, Po-Hsien |
---|---|
論文名稱: |
EGFR與c-Met雙重激酶抑制劑及DBPR104磷酸前驅物之合成研究 The Developments of Dual EGFR and c-Met Kinase Inhibitors and DBPR104 Phosphate Prodrugs |
指導教授: |
謝興邦
Hsieh, Hsing-Pang 汪宏達 Wang, Horng-Dar |
口試委員: |
王慧菁
Wang, Hui-Ching 李靜琪 Lee, Jinq-Chyi |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 282 |
中文關鍵詞: | 激酶抑制劑 、藥物化學 、有機化學 |
外文關鍵詞: | c-Met, medicinal chemistry |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第壹部份 : EGFR與c-Met雙重激酶抑制劑之研究
以呋喃嘧啶EGFR抑制劑為核心結構,引入c-Met抑制劑側鏈,設計與合成一系列呋喃嘧啶化合物,並探討其做為EGFR和c-Met雙重功能抑制劑的潛力。本論文以具有麥可受體的EGFRL858R/T790M抑制劑12為核心,於呋喃[2,3-d]嘧啶四號位置上引入不同的c-Met側鏈,找出較適合的雙重抑制劑側鏈,再以循理性藥物設計探討六號位置的取代基大小及異原子對活性的影響,最後發展出具有EGFRL858R/T790M (IC50 = 43 nM)與c-Met (IC50 = 19 nM)雙重激酶抑制效果的化合物35j2。
第貳部分 : DBPR104磷酸前驅物之合成研究
利用磷酸前驅藥物的設計策略來改善抗癌藥物DBPR104對水溶解度過低 (0.9 μg/mL) 的問題,由於NCH2O鍵的不穩定,在合成上都無法成功地引入磷酸的水溶性基團。
Part I. Development of Dual EGFR and c-Met Kinase Inhibitors
Based on knowledge-based drug design, we hybridized the core structure of EGFR kinase inhibitors and c-Met kinase inhibitors. Also, we designed and synthesized a series of furanopyrimidine compounds as dual-functional inhibitors of EGFR and c-Met kinase, as well as explored their applications. We used compound 12 as core structure, containing a Michael acceptor group, and introduced different c-Met kinase inhibitor side chains at 4-position of furano[2,3-d]pyrimidine to examine the more suitable side chain for dual-functional inhibitor. Followed by rational drug design, we explored the effects of size and heteroatoms of aromatic substitutions at 6-position of furano[2,3-d]pyrimidine on activity. Finally, we discovered the compound 35j2 that possesses EGFRL858R/T790M (IC50 = 43 nM) and c-Met (IC50 = 19 nM) kinase activities as potential dual inhibitor.
Parts II. Development of DBPR104 Phosphate Prodrugs
Because of the properties of anticancer drug DBPR104, we focused on utilizing phosphate prodrugs strategy to improve poor water solubility (0.9 μg/mL). Due to the instability of the NCH2O bond of the DBPR104 structure, the synthesis by introducing phosphate groups into DBPR104 and compound 62 faced difficulty.
1. https://www.mohw.gov.tw/cp-16-33598-1.html
行政院衛生福利部統計資料
2. https://www.cancer.gov/about-cancer/treatment/types
3. Stacey, A. K.; Esther, K. W.; Meir, J. S.; Bernard, A. R.; Graham, A. G.
Comparison of aspects of smoking among four histologic types of lung cancer.
Tob. Control 2008, 3, 198-204.
4. Yewale, C.; Baradia, D.; Vhora, I.; Patil, S.; Misra, A. Epidermal growth factor
receptor targeting in cancer: a review of trends and strategies. Biomaterials
2013, 34, 8690-8707.
5. Johnson, L. N.; Barford, D. The effects of phosphorylation on the structure and
function of protein. Annu. Rev. Biophys. Biomol. Struct. 1993, 22, 199-232.
6. Liu, Y.; Gray, N. S. Rational design of inhibitors that bind to inactive kinase
conformations. Nat. Chem. Biol. 2006, 2, 358-364.
7. Liao, J. J. Molecular recognition of protein kinase binding pockets for design
of potent and selective kinase inhibitors. J. Med. Chem. 2007, 50, 409-424.
8. Downward, J.; Parker, P.; Waterfield, M. D. Autophosphorylation sites on the
epidermal growth factor receptor. Nature 1984, 311, 4-10.
9. Zhang, H.; Berezov, A.; Wang, Q.; Zhang, G.; Drebin, J.; Murali, R.; Greene, M. I. ErbB receptors: from oncogenes to targeted cancer threapies. J. Clin.
Invest. 2007, 117, 2051-2058.
10. Herbst, R. S.; Heymach, J. V.; Lippman, S. M. Lung cancer. N. Engl. J. Med.
2008, 359, 1367-1380.
11. Olayioye, M. A.; Neve, R. M.; Lane, H. A. The ErbB singnaling network:
receptor heterodimerization in development and cancer. EMBO. J. 2000, 19,
3159-3167.
12. Sharma, S. V.; Bell, D. W.; Settleman, J.; Haber, D. A. Epidermal growth factor
receptor mutations in lung cancer. Nat. Rev. Cancer 2007, 7, 169-181.
13. Paez, J. G.; Jänne, P. A.; Lee, J. C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman,
P.; Kaye, F. J.; Linderman, N.; Boggon, T. J.; Naoki, K.; Sasaki, H.; Fuiji, Y.; Eck, M. J.; Sellers, W. R.; Johnson, B. E.; Meyerson, M. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004, 304, 1497-1500.
14. Gazdar, A. F. Activating and resistance mutations of EGFR in non-small-cell
lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors.
Oncogene 2009, 28, 24-31.
15. Engelman, J. A.; Zejnullahu, K.; Mitsudomi, T.; Song, Y.; Hyland, C.; Park, J.
O.; Lindeman, N.; Gale, C. M.; Zhao, X.; Christensen, J.; Kosaka, T.; Holmes, A. J.; Rogers, A. M.; Cappuzzo, F.; Mok, T.; Lee, C.; Johnson, B. E.; Cantely, L. C.; Jänne, P. A. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007, 316, 1039-1043.
16. https://www.diagnosticnavigator.com/e-learning/play-course.html?moduleId= module-us3&chapterId=egfr-chapter-3&index=0
17. Sullivan, I.; Planchard, D. Next-generation EGFR tyrosine kinase inhibitors for treating EGFR-mutant lung cancer beyond first line. Front Med(Lausanne) 2017, 18, 73-76.
18. Liao, B. C.; Lin, C. C.; Yang, J. C. Second and third-generation epidermal growth factor receptor tyrosine kinase inhibitors in advanced nonsmall cell lung cancer. Curr. Opin. Oncol. 2015, 27, 94-101.
19. Maione, P.; Sacco, P. C.; Sgambato, A.; Casaluce, F.; Rossi, A.; Gridelli, C. Overcoming resisitance to targeted therapies in NSCLC: current approaches and clinical application. Ther. Adv. Med. Oncol. 2015, 7, 263-273.
20. Sequist, L. V. The role of third-generation epithelial growth factor receptor inhibitors in non-small cell lung cancer. Clin. Adv. Hematol. Oncol. 2015, 13, 147-149.
21. Brosseau, S.; Viala, M.; Varga, A.; Planchard, D.; Besse, B.; Soria, J. C. 3rd generation’s TKI in lung cancer non-small cell EGFR-mutated having acquired a secondary T790M resistance. Bull Cancer 2015, 102, 749-757.
22. https://adisinsight.springer.com/drugs/800036204
23. Johnson, M.; Koukoulis, G.; Kochhar, K.; Kubo, C.; Nakamura, T.; Iyer, A. P.
Selective tumorigenesis in non-parenchymal liver epithelical cell lines by
hepatocyte growth factor transfection. Cancer Letters 1995, 96, 37-48.
24. Kochhar, K. S.; Johnson, M. E.; Volpert, O.; Iyer, A. P. Evidence for autocrine basis of transformation in NIH-3T3 cells transfected with met/HGF receptor
gene. Growth Factors 1995, 12, 303-313.
25. Gentile, A.; Trusolino, L.; Comoglio, P. M. The Met tyrosine kinase receptor
in development and cancer. Cancer Metastasis Rev. 2008, 27, 85-94.
26. Remon, J.; Besses, B. Unravelling singal escape through maintained EGFR activation in advanced non-small cell lung cancer (NSCLC): new treatment
options. ESMO. Open 2016, 1, e000081.
27. van Linden, O. P.; Kooistra, A. J.; Leurs, R.; de Esch, I. J.; de Graaf, C. KLIFS:
a knowledge-based structural database to navigate kinase-ligand interaction
space. J. Med. Chem. 2014, 57, 249-277.
28. Boccaccio, C.; Comoglio, P. M. Invasive growth: a MET-driven genetic
programme for cancer and stem cells. Nat. Rev. Cancer 2006, 6, 637-645.
29. https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm497483
.htm
30. Bonfils, C. et, al. AACR 2012 Annual Meeting 2012, Abstract 1790.
31. https://clinicaltrials.gov/ct2/show/NCT02544633
32. Schroeder, G. M.; An, Y.; Cai, Z. W.; Chen, X. T.; Clark, C.; Cornelius, L. A.;
Dai, J.; Gullo-Brown, J.; Gupta, A.; Henley, B.; Hunt, J. T.; Jeyaseelan, R.; Kamath, A.; Kim, K.; Lippy, J.; Lombardo, L. J.; Manne, V.; Oppenheimer, S.; Sack, J. S.; Schmidt, R. J.; Shen, G.; Stefanski, K.; Tokarski, J. S.; Trainor, G. L.; Wautlet, B. S.; Wei, D.; Williams, D. K.; Zhang, Y.; Zhang, Y.; Fargnoli, J.; Borzilleri, R. M. Discovery of N-(4-(2-amino-3-chloropyridin-4-yloxy)-3- fluorophenyl)-4-ethoxy-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carb oxamide (BMS-777607), a selective and orally efficacious inhibitor of the Met kinase superfamily. J. Med. Chem. 2009, 52, 1251-1254.
33. Szokol, B.; Gyulavári, P.; Kurkó, I.; Baska, F.; Szántai-Kis, C.; Greff, Z.; Orfi, Z.; Peták, I.; Pénzes, I.; Torka, R.; Ullrich, A.; Orfi, L.; Vántus, T.; Kéri, G. Discovery and biological evaluation of novel dual EGFR/c-Met inhibitors. ACS Med. Chem. Lett. 2014, 30, 298-303.
34. Neal, J. W.; Dahlberg, S. E.; Wakelee, H. A.; Aisner, S. C.; Bowden, M.; Huang, Y.; Carbone, D. P.; Gerstner, G. J.; Lerner, R. E.; Rubin, J. L.; Owonikoko, T. K.; Stella, P. J.; Steen, P. D.; Khalid, A. A.; Ramalingam, S. S.; ECOG-ACRIN 1512 investigators. Erlotinib, cabozantinib, or erlotinib plus cabozantinib as second-line or third-line treatment of patients with EGFR wild-type advanced non-small-cell lung cancer (ECOG-ACRIN): a randomized, controlled, open- label, multicentre, phase 2 trial. Lancet Oncol. 2016, 12, 1661-1671.
35. Scagliotti, G. V.; Shuster, D.; von Pawel, J.; Shepherd, F. A.; Ross, J. S.; Wang, Q.; Schwartz, B.; Akerley, W. Tivatinib in combination with erlotinib versus erlotinib alone for EGFR-mutant NSCLC: an exploratory analysis of the phase 3 MARQUEE study. J. Thorac. Oncol. 2018, 6, 849-854.
36. Ou, S. I.; Govindan, R.; Eaton, K. D.; Otterson, G. A.; Gutierrez, M. E.; Mita,
A. C.; Argiris, A.; Brega, N. M.; Usari, T.; Tan, W.; Ho, S. N.; Robert, F. Phase I results from a study of crizotinib in combination with erlotinib in patients with advanced nonsquamous non-small cell lung cancer. J. Thorac. Oncol. 2017, 1, 145-151.
37. Solomon, B. Trials and tribulations of EGFR and MET inhibitor combination therapy in NSCLS. J. Thorac. Oncol. 2017, 12, 9-11.
38. Coumar, M. S.; Chu, C. Y.; Lin, C. W.; Shiao, H. Y.; Reddy, R.; Lin, W. H.; Chen, C. H.; Peng, Y. H.; Leou, J. S.; Lien, T. W.; Huang, C. T.; Fang, M. Y.; Wu, S. H.; Chittimalla, S. K.; Song, J. S.; Hsu, J. T.; Wu, S. Y.; Liao, C. C.; Chao, Y. S.; Hsieh, H. P. Fast-forwarding hit to lead: aurora and epidermal growth factor receptor kinase inhibitor lead identification. J. Med. Chem. 2010, 13, 4980-4988.
39. Tung, Y. S.; Coumar, M. S.; Wu, T. S.; Shiao, H. Y.; Chang, J. Y.; Liou, J. P.; Shukla, P.; Chang, C. W.; Chang, C. Y.; Kuo, C. C.; Yeh, T. K.; Lin, C. Y.; Wu, J. S.; Wu, S. Y.; Liao, C. C.; Hsieh, H. P. Scaffold-hopping strategy: synthesis and biological evaluation of 5,6-fused bicyclic heteroaromatics to identify orally bioavailable anticancer agents. J. Med. Chem. 2011, 54, 3076- 3080.
40. Liou, J. P.; Mahindroo, N.; Chang, C. W.; Guo, F. M.; Lee, W. H.; Tan, U. K.; Yeh, T. K.; Kuo, C. C.; Chang, Y. W.; Lu, P. H.; Tung, Y. S.; Lin, K. T.; Chang, J. Y.; Hsieh, H. P. Structure-activity relationshipStudies of 3-aroylindoles as potent antimitotic agents. ChemMedChem 2006, 1, 1106-1118.
41. Kuo, C. C.; Hsieh, H. P.; Pan, W. U.; Chen, C. P.; Liou, J. P.; Lee, S. J.; Chang, Y. L.; Chen, L. T.; Chen, C. T.; Chang, J. Y. BPR0L075, a novel synthetic indole compound with antimitotic activity in human cancer cells, exerts effective antitumoral activity in Vivo. Cancer Res. 2004, 64, 4621-4628.
42. Kansy, M.; Senner, F.; Gubernator, K. Physicochemical high throughput screening: parallel artificial absorption processes. J. Med. Chem. 1998, 41, 1007-1010.
43. Ottaviani, G.; Martel, S.; Carrupt, P. A. Parallel artificial membrane permeability assay: a new membrane for the fast prediction of passive human skin permeability. J. Med. Chem. 2006, 49, 3948-3954.
44. Faller, B. Artifical membrane assays to asses permeability. Curr. Drug. Metab. 2008, 9, 886-892.
45. Yao, H. T.; Wu, Y. S.; Chang, Y. W.; Hsieh, H. P.; Chen, W. C.; Lan, S. J.; 154
Chen, C. T.; Chao, Y. S.; Chang, L.; Sun, H. Y.; Yeh, T. K. Biotransformation of 6-methoxy-3-(3, 4, 5-trimethoxy-benzoyl)-1H-indole (BPR0L075), a novel antimicrotubule agent, by mouse, rat, dog, and human liver microsomes. Drug Metab. Dispos. 2007, 35, 1042-1049.
46. Rautio, J.; Kumpulainen, H.; Heimbach, T.; Oliyai, R.; Oh, D.; Järvinen, T.; Savolainen, J. Prodrugs: design and clinical applications. Nat. Rev. Drug Discov. 2008, 7, 255-270.
47. Brouwers, J.; Tack, J.; Augustijns, P. In vitro behavior of a phosphate ester prodrugs of amprenavir in human intestinal fluods and in the caco-2 systems: illustration of intraluminal supersaturation. Int. J. Pharm. 2007, 336, 302-309.
48. Stella, V. A case for prodrugs: fosphenytion. Adv. Drug Deliv. Rev. 1996, 19, 311-330.
49. Kim, S.; Markovitz, B.; Trovato, R.; Murphy, B. R.; Austin, H.; Willardsen, A. J.; Baichwal, V.; Morham, S.; Bajji, A. Discovery of a new HIV-1 inhibitors scaffold and synthesis of potential prodrugs of indazoles. Bioorg. Med. Chem. Lett. 2013, 23, 2888-2892.
50. Xi, N.; Wang, T.; Tang, Y.; Sun, M.; Wang, Q. Substituted azaindole compounds salts, pharmaceutical compositions thereof and methods of use. US 2014/0056849 A1, 2014.
51. Kadow, J. F.; Ueda, Y.; Meanwell, N. A.; Connolly, T. P.; Wang, T.; Chen, C. P.; Yeung, K. S.; Zhu, J.; Bender, J. A.; Yang, Z.; Parker, D.; Lin, P. F.; Colonno, R. J.; Mathew, M.; Morgan, D.; Zheng, M.; Chien, C; Grasela, D. Inhibitors of human immunodeficiency virus type 1 (HIV-1) attachment 6. Preclinical and human pharmacokinetic profiling of BMS-663749, a phosphonooxymethyl prodrug of the HIV-1 attachment inhibitor 2-(4-benzoyl- 1-piperazinyl)-1-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)-2-oxoethano ne (BMS-488043). J. Med. Chem. 2012, 55, 2048-2056.
52. (a) Wang, T.; Wallace, O. B.; Zhang, Z.; Meanwell, N. A.; Bender, J. A. Bristol- Myers Squibb company. WO0162255A1, 2001.
(b) 國立清華大學董彥士博士論文(民國九十六年).