研究生: |
鄭如辰 Cheng, Ju Chen |
---|---|
論文名稱: |
銀髮族雲端健康照護之採用因素-修正科技接受模式 The determinants of adopting cloud health service by senior citizen–The revised Technology Acceptance Model |
指導教授: |
張元杰
Chang, Yuan-Chieh |
口試委員: |
胡美智
Hu, Mei-Chih 陳旻男 Chen, Min-Nan |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 科技管理研究所 Institute of Technology Management |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 雲端技術 、銀髮族 、科技接受模式 、創新擴散理論 、主觀規範 、遠距照護服務 |
外文關鍵詞: | Cloud health, Technology acceptance model (TAM), Diffusion of innovation (DOI), Senior citizens, Subjective Norm, Security |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著銀髮族的數量急遽上升以及慢性病普及,雲端技術的發展也使得自我健康管理 領域出現“雲端服務”。新竹衛生局為配合政府的健康城市計劃且促進市民健康自我管 理意識,建立雲端遠距照護服務「寶貝機」,使新竹市高齡族群可以透過此服務,達到 自我健康管理的目標。
本研究主要目的為探討銀髮族對健康遠距照護服務的接受程度,雲端遠距照護設備 「BabyBot 寶貝機」使用者為探討對象,以科技接受模式為基礎,加入遠距照護服務因 子:主觀規範、銀髮族接受雲端科技可能因子:安全性,及創新擴散理論特性:可觀察 性、相對優勢,建構出修正科技接受模式。本研究採問卷調查法,研究場域為新竹市社 區關懷據點,向銀髮族以口頭敘述問卷的方式蒐集資料,共發放 250 份問卷,回收有效 問卷 222 份,有效回收率為 88.8%,資料蒐集完成後以 SPSS、AMOS 進行描述性統計、 因素分析(EFA)、驗證性分析(CFA)、相關分析以及迴歸分析。
研究結果顯示八項假設除安全性對行為意圖無顯著影響外,其餘假設皆成立。建議 後續遠距照護服務之研究,可以採用本研究之架構進行延伸,並去除安全性此變項。本 研究亦希望透過本研究之問卷調查結果進行系統化之整理與分析,結果與建議可供遠距 照護產業後續實務上之參考,以作為未來政府發展雲端遠距照護服務之重要考量。
With growing aging population and rapidly spreading chronic diseases, coupled with the development of cloud computing technology and emergence of intelligent mobile technology, personal health management has entered the era of ubiquitous cloud services. Therefore, Hsinchu City is establishing cloud health management system with a telecare device (Babybot), which is an innovation of healthcare, used as a
self-monitoring health tool for the senior citizens.
The study uses two characteristics of diffusion of innovations (DOI): relative advantage and observability to extend technology acceptance model (TAM) and proposes a new theoretical framework. In addition, the research model is developed by integrating relevant antecedents from the literature and is empirically tested with elderly-specific antecedent variables, including subjective norm, security. The purpose of this study is making a research model to explore the main factors affecting elderly adoption of the telecare devices (Babybot) and the relationship between each antecedent by seniors of Hsinchu city.
The result shows that 1) relative advantage has positive significant impact on perceived ease of use and perceived of use 2) observability and perceived of use have positive significant impact on perceived of use 3) perceived ease of use, perceived of use and subjective norm have positive significant impact on behavioral intention 4) there’s no significant relationship between security and behavioral intention.
(一)中文文獻
1. 王文弘, & 林獻堂. (2008). 網路銀行消費者行為之研究—科技接受模型.
2. 王振浩. (2001). 影響消費者採用網路銀行行為意向之因素研究.
3. 何定為, & 賴才雅. (2008). 衛生署遠距照護試辦計畫服務架構介紹. 護理雜
誌, 55(4), 17-23.
4. 余家瑩. (2008). Wii 應用於復健醫療之科技接受度研究. 成功大學.
Available from Airiti AiritiLibrary database. (2008 年)
5. 余顯強. (2011). 淺談雲端運算在圖書館服務之應用.
6. 吳昌政, 林玗錚, & 孫子傑. (2013). 老人關懷零距離--社區/居家遠距照護之
發展及應用探討. 台灣老年學論壇.
7. 吳盛, & 林東清. (2007). 以計畫行為理論探討資訊人員的知識分享行為: 資
訊管理學報.
8. 廷威. (2008). 遠距照護與線上問診系統之研究. 中臺科技大學醫護管理研
究所學位論文, 1-101.
9. 李浩維. (2009). 雲端運算與服務的研究與應用以 [Google App Engine] 為例:
嶺東科技大學碩士論文.
10. 林育伶. (2011). 遠距照護服務系統於社區之評估研究. 中臺科技大學健康
產業管理研究所學位論文, 1-75.
11. 林畯城, 廖本裕, & 黃嘉勝. (2007). 彰化縣國民小學推廣網路學籍管理系統
現況及影響使用之因素研究. 臺中教育大學學報:教育類, 21(1), 1-25.
12. 邱天助. (2002). 老人不是社會問題. 聯合報論壇.
13. 邱曉彥, & 陳靜敏. (2010). 資訊科技與社區護理之結合: 遠距護理的興起.
源遠護理, 4(2), 5-10.
14. 高翊群. (2007). 行動導覽服務使用者接受模式分析-創新擴散之觀點. 大同
大學資訊經營學系所學位論文, 1-63.
15. 張秀琦. (2011). Factors influencing the adoption of cloud computing: an
integration of TAM, TPB, IDT, and security risk.
16. 張雅惠. (2005). 台灣高齡者居住型態選擇之研究: 兼論台灣老人住宅政策.
17. 張愛華, & 蕭丞傑. (2010). 行動服務之再使用意願:一項整合模式之檢驗.
[Examining Consumers' Intention to Reuse Mobile Services: An Integrative
Model]. 輔仁管理評論, 17(2), 69-94.
18. 張曉婷. (2008). 淺談台灣之遠距照護. 12.
19. 許加樂, & 張定原. (2012). 影響採用電子病歷結合雲端運算跨院交換行為
意圖之實證研究.
20. 許淑英. (2012). 以延伸型科技接受模式探討中高齡族群對網路銀行之接受
75
度.
21. 許鈞維. (2011). 電腦使用者對雲端運算科技接受意願之研究. 嶺東科技大
學行銷與流通管理研究所學位論文, 1-92.
22. 許嘉麟, 張韡瀚, 黃美涓, 陳皇仲, 柯智裕, & 鄧復旦. (2008). 智慧型高齡
者照護設備科技接受問卷之內容效度-以 “互動式隨身照護手錶” 為例.
臺灣職能治療研究與實務雜誌, 4(2), 104-115.
23. 許榮洲. (2005). 個人用戶對網路銀行接受行為研究-信任與科技接受模式的
整合性探討.
24. 陳秉秝. (2009). 影響屏東縣國小教師使用網路銀行因素之研究.
25. 陳威佑. (2011). 影響消費者採用遠距健康照護服務因素之研究. 中央大學
資訊管理學系學位論文, 1-67.
26. 陳美如, 陳冠宇, 江碩儒, 李俊秀, 余文瑞, & 何清幼. (2011). 台北市高血
壓個案對遠距健康照護服務接受度之初探. 醫療資訊雜誌, 20(2), 1-13.
27. 彭秀琴, & 張念慈. (2010). 雲端運算下資訊安全之探討, 經建會.
28. 閔垠. (1998). 老人安養新論. 銀髮族雜誌.
29. 黃重憲. (2009). 淺談雲端運算 (Cloud Computing). 國立台灣大學計算機與
資訊網路中心, Mar, 20.
30. 黃巽聰. (2012). 以延伸性科技接受模式探討銀髮族對行車導航系統之接受
度.
31. 黃獻輝. (2009). 雲端運算於企業應用之研究. 淡江大學資訊管理學系碩士
班學位論文, 1-45.
32. 黃齡逸. (2005). 探討影響使用者採納中華電信 MOD 的關鍵因素. 撰者.
33. 楊玉婷. (2004). 中年與老年人消費行為因果模式與世代差異之研究. 淡江
大學, 碩士論文.
34. 楊敦質. (2007). 以科技接受模型分析數位有線電視之使用者採用行為. 撰
者.
35. 蔡峻弘. (2012). 企業雲端應用服務採用之決策分析. 元智大學資訊管理學
系學位論文, 1-117.
36. Chen, W.-y. (2011). 影響消費者採用遠距健康照護服務因素之研究.
76
(二)英文文獻
38. Agarwal, R., & Prasad, J. (1998). The antecedents and consequents of user perceptions in information technology adoption. Decis. Support Syst., 22(1), 15-29. doi: 10.1016/s0167-9236(97)00006-7
39. Ajzen, I. (1985). From intentions to actions: A theory of planned behavior: Springer.
40. Ajzen, I. (1989). Attitude structure and behavior. Attitude structure and function, 241-274.
41. Ajzen, I. (1991). The theory of planned behavior. Organ Behav Hum Decis Process, 50(2), 179-211.
42. Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behaviour.
43. Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., . . . Stoica, I. (2010). A view of cloud computing. Communications of the ACM, 53(4), 50-58.
44. Brunette, G., & Mogull, R. (2009). Security guidance for critical areas of focus in cloud computing v2. 1. Cloud Security Alliance, 1-76.
45. Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation computer systems, 25(6), 599-616.
46. Chau, P. Y. K., & Hu, P. J.-H. (2002). Investigating healthcare professionals’ decisions to accept telemedicine technology: an empirical test of competing theories. Information & Management, 39(4), 297-311. doi: http://dx.doi.org/10.1016/S0378-7206(01)00098-2
47. Chen, L.-d., Gillenson, M. L., & Sherrell, D. L. (2002). Enticing online consumers: an extended technology acceptance perspective. Information & Management, 39(8), 705-719. doi: http://dx.doi.org/10.1016/S0378-7206(01)00127-6
48. Chen, W.-y. (2011). 影響消費者採用遠距健康照護服務因素之研究.
49. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user
acceptance of information technology. MIS quarterly, 319-340.
50. Davis, F. D. (1993). User acceptance of information technology: system
characteristics, user perceptions and behavioral impacts. International journal of
man-machine studies, 38(3), 475-487.
51. Davis, J. A., Brewer, J., & Atkin, D. (1992). Pre‐season physiological
characteristics of English first and second division soccer players. Journal of Sports Sciences, 10(6), 541-547. doi: 10.1080/02640419208729950
77
52. Doughty, K., Monk, A., Bayliss, C., Brown, S., Dewsbury, L., Dunk, B., . . . Lowe, C. (2007). Telecare, telehealth and assistive technologies-do we know what we're talking about? Journal of Assistive Technologies, 1(2), 6-10.
53. Fang, X., Chan, S., Brzezinski, J., & Xu, S. (2005). Moderating Effects of Task Type on Wireless Technology Acceptance. Journal of Management Information Systems, 22(3), 123-157. doi: 10.2753/MIS0742-1222220305
54. Feeley, T. H. (2003). Using the Theory of Reasoned Action to Model Retention in Rural Primary Care Physicians. The Journal of Rural Health, 19(3), 245-251. doi: 10.1111/j.1748-0361.2003.tb00570.x
55. Hartwick, J., & Barki, H. (1994). Explaining the Role of User Participation in Information System Use. Management science, 40(4), 440-465. doi: doi:10.1287/mnsc.40.4.440
56. Hsu, C.-N. (2010). 結合創新擴散理論與科技接受模型探討企業員工使用數 位學習系統意願之研究.
57. Huang, J.-C. (2013). Innovative health care delivery system—A questionnaire survey to evaluate the influence of behavioral factors on individuals' acceptance of telecare. Comput Biol Med, 43(4), 281-286.
58. Jensen, M., Schwenk, J., Gruschka, N., & Iacono, L. L. (2009). On Technical Security Issues in Cloud Computing. 109-116. doi: 10.1109/cloud.2009.60
59. Lee, M.-C. (2009). Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electronic Commerce Research and Applications, 8(3), 130-141.
60. Lee, Y.-H., Hsieh, Y.-C., & Hsu, C.-N. (2011). Adding Innovation Diffusion Theory to the Technology Acceptance Model: Supporting Employees' Intentions to use E-Learning Systems. Educational Technology & Society, 14(4), 124-137.
61. Mao, E., & Palvia, P. (2006). Testing an extended model of IT acceptance in the Chinese cultural context. ACM SIGMIS Database, 37(2-3), 20-32.
62. Mell, P., & Grance, T. (2011). The NIST definition of cloud computing.
63. Moore, G. C., & Benbasat, I. (1991). Development of an Instrument to Measure
the Perceptions of Adopting an Information Technology Innovation. Information
Systems Research, 2(3), 192-222. doi: doi:10.1287/isre.2.3.192
64. Mun, Y. Y., & Hwang, Y. (2003). Predicting the use of web-based information
systems: self-efficacy, enjoyment, learning goal orientation, and the technology acceptance model. International Journal of Human-Computer Studies, 59(4), 431-449.
65. Mun, Y. Y., Jackson, J. D., Park, J. S., & Probst, J. C. (2006). Understanding information technology acceptance by individual professionals: Toward an integrative view. Information & Management, 43(3), 350-363.
78
66. Norris, A. (2001). Essentials of telemedicine and telehealth: John Wiley and Sons Ltd, Chichester.
67. Pan, S., & Jordan-Marsh, M. (2010). Internet use intention and adoption among Chinese older adults: From the expanded technology acceptance model perspective. Computers in Human Behavior, 26(5), 1111-1119. doi: 10.1016/j.chb.2010.03.015
68. Phang, C. W., Li, Y., Sutanto, J., & Kankanhalli, A. (2005). Senior citizens' adoption of e-government: in quest of the antecedents of perceived usefulness. Paper presented at the System Sciences, 2005. HICSS'05. Proceedings of the 38th Annual Hawaii International Conference on.
69. Premkumar, G., & Roberts, M. (1999). Adoption of new information technologies in rural small businesses. Omega, 27(4), 467-484. doi: http://dx.doi.org/10.1016/S0305-0483(98)00071-1
70. Rogers, E. M. (1983). Diffusion of Innovations: Free Press.
71. Ryu, M.-H., Kim, S., & Lee, E. (2009). Understanding the factors affecting
online elderly user’s participation in video UCC services. Computers in Human
Behavior, 25(3), 619-632.
72. Sultan, N. (2010). Cloud computing for education: A new dawn? International
Journal of Information Management, 30(2), 109-116.
73. Szajna, B. (1996). Empirical evaluation of the revised technology acceptance
model. Management science, 42(1), 85-92.
74. Tung, F.-C., Chang, S.-C., & Chou, C.-M. (2008). An extension of trust and
TAM model with IDT in the adoption of the electronic logistics information
system in HIS in the medical industry. Int J Med Inform, 77(5), 324-335.
75. Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology
Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2),
186-204. doi: 10.1287/mnsc.46.2.186.11926
76. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User
acceptance of information technology: Toward a unified view. MIS quarterly,
425-478.
77. Wu, J.-H., Wang, S.-C., & Lin, L.-M. (2007). Mobile computing acceptance
factors in the healthcare industry: A structural equation model. Int J Med Inform,
76(1), 66-77.
78. Yu, P., Li, H., & Gagnon, M.-P. (2009). Health IT acceptance factors in
long-term care facilities: a cross-sectional survey. Int J Med Inform, 78(4), 219-229.