簡易檢索 / 詳目顯示

研究生: 高時中
論文名稱: 利用1mm厚之週期極性反轉鈮酸鋰產生高功率紅外光雷射
1-mm thick PPLN for high-power infrared laser generation
指導教授: 黃衍介
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電科技產業研發碩士專班
Interdisciplinary Program of Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 44
中文關鍵詞: 鈮酸鋰週期極性反轉紅外光
外文關鍵詞: 1mm, PPLN, infrared laser, poling
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈮酸鋰 (LiNbO3) 晶體的非線性光學係數大,而且可利用高電壓對其進行週期性極化反轉而成為PPLN(Periodically Poled Lithium Niobate) 晶體。晶體的準相位匹配 (QPM, quasi-phase matching) 拓展了非線性光學晶體的應用範圍,且大大的提高了非線性光學轉換效率。而QPM-OPO所產生的近、中紅外光波段光源,可廣泛應用在軍事、環境監測、醫療、遠距離量測以及光譜學等各種領域。

    為了產生高功率紅外光的波長,我們嘗試製作厚度1mm的PPLN晶體,採用兩階段極化反轉方法,不但成功地克服了鈮酸鋰晶體在高電壓(~22kV)製程下容易破裂的問題,且獲得一些重要的控制參數與現象解釋;而且,為了充分應用PPLN大截面積的優點,我們還設計了一個高功率的紅外光雷射架構。我們成功地製作出長度35mm,寬度5mm ,週期為29.6um之週期性極性反轉鈮酸鋰晶體,另外還測試了其非線性轉換效率。在光參數產生器結構,總轉換效率(訊號光加閒置光)可達到61.2%,可以證明我們所的製作的PPLN晶體的週期性很好。為了獲得最佳的輸出反射率,利用可旋轉的BK7材質坡璃片其Fresnel反射特性,用以模擬出不同的輸出反射率進行的光參數振盪器實驗,找到50%及75% 兩種輸出反射率。最後,我們將50%的輸出反射率直接鍍在PPLN上進行了光參數振盪器實驗,這些成果都是為了設計出一個高功率之紅外光波段光源而努力


    The non-linear optical coefficient of Lithium Niobate (LiNbO3) crystal is great, and can utilize the high voltage to transfer it to PPLN (Periodically Poled Lithium Niobate) crystal. QPM(quasi-phase matching) technique enlarges non-linear optical coefficient and expands the applications in many domains such as military, environmental monitor, medical treatments, quantity examining, long distance measurements and spectroscopy…etc.

    For producing high power infrared, one utilized two stages methods to fabricate 1mm thickness PPLN with period 29.6um. Not only one overcame the problems during high voltage poling (~22kV) and collected many valuable parameters, but proposed a high power infrared laser structure sufficiently used the advantages of this large cross section PPLN crystal. One had succeeded in fabricating 35mm-long, 5mm-width and 1mm thickness PPLN with the period is 29.6um. In OPG, at the 2 mJ pump pulse energy, it generated 829uJ and 395uJ pulse energy; 41.5% and 19.8% conversion efficiency at the signal and idler wavelengths, respectively. The total conversion efficiency of OPG process is about 61.2%. For getting best output coupler at signal wave, utilize whirling BK7 glass of its Fresnel reflection characteristic to simulate tunable output coupler reflection. One obtained two values, 50% and 75%. Finally, one has carried on a series of OPO experiments with different output coupler. All these efforts were for the sake of preparations for a high power infrared laser one proposed.

    CHAPTER 1 INTRODUCTION 7 1.1 MOTIVATION 7 1.2 OPTICAL PARAMETRIC GENERATION 8 1.3 OPTICAL PARAMETRIC OSCILLATOR 9 1.4 QUASI-PHASE-MATCHING TECHNIQUE 9 1.5 POLING METHOD 10 1.6 OVERVIEW OF THIS THESIS 12 CHAPTER 2 THEORY OF QUASI-PHASE MATCHED OPTICAL PARAMETRIC GENERATION AND OPTICAL PARAMETRIC OSCILLATOR 13 2.1 INTRODUCTION 13 2.2 OPTICAL PARAMETRIC GENERATION (OPG) 13 2.3 OPTICAL PARAMETRIC OSCILLATOR (OPO) 17 2.4 QUASI-PHASE-MATCHINGOPTICAL (QPM) 19 CHAPTER 3 FABRICATION OF 1mm THICKNESS PERIODICALLY POLED LITHIUM NIOBATE 23 3.1 INTRODUCTION 23 3.2 LITHOGRAPHY PROCESS 23 3.3 ELECTRIC FIELD PERIODIC POLING 24 CHAPTER 4 EXPERIMENTAL RESULT FOR THE DESIGN OF HIGH POWER INFRARED LASER 30 4.1 INTRODUCTION 30 4.2 OPTICAL COATING FOR PPLN 31 4.3 OPG EXPERIMENT 32 4.4 OPTIMUM OUTPUT COUPLIER COATING 34 4.5 OPO EXPERIMENTS 36 4.6 ANALYSIS AND DISCUSSION 40 CHAPTER 5 CONCLUSION 42 Reference 43

    [1] L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12, 2102-2116 (1995).
    [2] M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631-2654 (1997).
    [3] G. D. Miller, R. G. Batchko, W. M. Tulloch et al., Opt. Lett. 22, 1834-1836 (1997).
    [4] R. G. Batchko, D. R. Weise, T. Plettner et al., Opt. Lett. 23, 168-170 (1998).
    [5] L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, in Conference on Lasers and Electro-Optics, 15, 1995 OSA Technical Digest Series, 268-269
    [6]J. A. Giordmaine and R. C. Miller, Phys. Rev. Lett. 14:973 (1965).
    [7] H. Ishizuki, I, Shoji, and T. Taira, "Periodic Poling Characteristics of Congruent MgO:LiNbO3 Crystal at Elevated Temperatures," AppI. Phys. Lett. 82, 4062-4064 (2003).
    [8] J.A. Armstrong, N. Blombergen, J. Ducuing, and P.S. Pershan, “Interacton between light waves in a nonlinear dielectric,” Phys. Rev. 127 pp. 1918-1939, 1962.
    [9] L. E. Myer, G.D. Miller, R.G. Eckardt, M.M. Fejer, and R.L. Byer, Opt. Let. 20 pp. 52-54 (1995)
    [10] Gregory David Miller PHD dissertation STANFORD UNIVERSITY, USA,1998.
    [11] R. L. Byer, “Optical parametric oscillators,” in Quantum Electronics: A Treatise, H. Tabin and C. L. Tang, ed. (Academic, New York, 1975), pp. 587-702.
    [12] Y.C. Huang, Principles of Nonlinear Optics Course Reader
    [13] Dieter H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate, ” OPTICS LETTERS, Vol. 22, No. 20, pp. 1553- 1555 (1997).
    [14] CAI Shuang-huang, WU Bo, SHEN Jian-wei, SHEN Yong-hang, “Study on temperature and domain period tuning of PPMgLN optical parametric oscillator” Journal of Zhejiang University(Engineering Science), Vol. 40 No.6 Jun. 2006
    [15] A.C. Chiang, PHD dissertation submitted to Department of Electrical Engineering, National Tsinghua University, Taiwan (2002)
    [16] M. M. J. W. van Herpen, S. E. Bisson and F. J. M. Harren, “Continuous-wave operation of a single-frequency optical parametric oscillator at 4–5 mm based on periodically poled LiNbO3, ” OPTICS LETTERS, Vol. 28, No. 24, pp. 2497- 2499 (2003).
    [17] A. C. Chiang, Y. C. Huang, Y. W. Fang, and Y. H. Chen, “Compact, 220-ps visible laser employing single-pass, cascaded frequency conversion in monolithic periodically poled lithium niobate, ” OPTICS LETTERS, Vol. 26, No. 2, pp. 66- 68 (2001).
    [18] T. Akutsu, H. Seki, M. Maruyama, H. Nakajima, S. Kurimura, K. Kitamura, H. Ishizuki, and T. Taira, “Selective nucleation control in periodical poling for quasi-phase-matched wavelength converters”, CLEOiQELS 2002, CFE4 (2002).
    [19] M. Maruyama, Et Seki, Y.Kato and H. Nakajima, S. Kurimura, N.E. Yu, Y. Nomura and K. Kitamura, “Periodical poling by selective nucleation for short-period QPM structures” Optical Society of America
    [20] Mark J. Missey*, Steve Russell, and Vince Dominic*, Robert G. Batchko, Kenneth L. Schepler, “Real-time visualization of domain formation in periodically poled lithium niobate”, 8 May 2000 / Vol. 6, No. 10 / OPTICS EXPRESS 195
    [21] Takeshi Usami, Junji Hirama, Yuzo Sasaki, and Hiromasa Ito, “High output energy quasi-phase-matched optical parametric generation based on periodically poled LiNbO3” (2000)
    [22] M. Maruyama, Et Seki, Y.Kato and H. Nakajima, S. Kurimura, N.E. Yu, Y. Nomura and K. Kitamura, “Periodical poling by selective nucleation for short-period QPM structures” Optical Society of America
    [23] M.C. Wengler, M. M¨ Uller, E. Soergel, K. Buse, “Poling dynamics of lithium niobate crystals”, Appl. Phys. B 76, 393–396 (2003)
    [24] 李港, 激光频率的变换与扩展-实用非线性光学技术, 科学出版社, 北京, 2005
    [25] J.E. Pearson, U. Ganiel, and A. Yariv, “Rise time of pulsed parametric oscillators”, IEEE J. Quant Electron. QE-8:433 (1972)
    [26] S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies”, IEEE J. Quant Electron. QE-15:415(1979)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE