簡易檢索 / 詳目顯示

研究生: 詹予欣
Chan, Yu-Hsin
論文名稱: 使用ATLAS探測器的新噴注演算法改進暗物質搜尋
Improved Dark Matter Searches with a New Jet Algorithm with the ATLAS Detector
指導教授: 徐百嫻
Hsu, Pai-Hsien
口試委員: 張敬民
Cheung, Kingman
史馬丁
Spinrath, Martin
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 40
中文關鍵詞: 高能實驗粒子物理大強子對撞機超環面儀器暗物質
外文關鍵詞: High energy physics, Particle physics, LHC, ATLAS, Dark matter
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我參與的研究利用對撞機搜尋衰變自希格斯玻色子並伴隨產生兩個底夸克的暗物質。我在這個研究組中負責的工作是關於與可變半徑噴注的引入。可變半徑噴注的特色是其半徑參數與噴注本身的橫向動量成反比。我們採用頂夸克對事件樣本,應用最大似然估計,對數據模擬中的底夸克的辨識效率進行校準,我們採用的辨識演算法為MV2c10,數據則是由超環面儀器在2015年和2016年以13TeV的能量收集。可變半徑噴注有助於改進底夸克的辨識率,而我的工作則幫助研究組能實際應用可變半徑噴注於分析當中,提高增強希格斯識別的性能,從而提供更好的研究表現。


    I involve in a collider search for dark matter produced in association with a Higgs boson decaying to two bottom quarks, which is simply called ``Mono-H(bb)" search. My work among this search is related to the application of variable radius (VR) jets.

    VR jets are jets constructed with variable radius jet algorithm whose radius parameters are inversely proportional to the transverse momentum of the jets. We apply likelihood based calibration on the VR jets to measure the $b$-jet efficiency of the MV2c10 $b$-tagging algorithm in samples of top quark pair events where both W bosons from top quarks decay leptonically. Correction factors from the difference between data and Monte Carlo simulation for the $b$-jet efficiency are computed in bins of the transverse momentum ($p_T$) of the jet. Data is collected by the ATLAS detector at $\sqrt{s} = 13$ TeV in 2015 and 2016, corresponding to an integrated luminosity of L = 36.2 fb$^{-1}$.

    This work contributes to the improvement of b-jet reconstruction, enhances the performance of boosted Higgs identification, and thus provides better sensitivity of the Mono-H(bb) search.

    Ch1 Introduction 1 Ch2 Searches for Dark Matter 2 2.1 The First Observational Evidence of Dark Matter 2 2.2 Current Understanding of Dark Matter 2 2.3 Detection of Dark Matter Particles 3 Ch3 The ATLAS Detector 4 3.1 The Physics Program 5 3.2 The Coordinates Systems 5 3.3 The Components 7 Ch4 The Mono-H(bb) Search 9 4.1 The Mono-X Search 9 4.2 Previous Work 9 4.3 Signal Model 10 4.4 Summary of the Analysis Strategy 10 4.5 Analysis Improvements: Variable Radius Track Jets 11 4.5.1 Ordinary Jet 11 4.5.2 Variable-R Jet 12 4.5.3 Application of VR Jet 13 Ch5 VR track jet b-tagging calibration 14 5.1 Event and Object Selection 14 5.1.1 Trigger 15 5.1.2 Leptons 15 5.1.3 VR Track Jets 16 5.1.4 Flavour Labeling 17 5.2 The Monte Carlo Simulation Samples 17 5.3 Cutflow 20 5.4 Comparison of Simulations with Data 21 5.4.1 The Jet $p_T$ Mismodeling Issue 21 5.5 Combinatorial Likelihood Approach 26 5.6 Systematic uncertainties 27 5.7 Results 28 5.8 Improvements on the Mono-H(bb) Search 33 Ch6 Conclusions 35 References 36

    [1] Hsu Pai-hsien Jennifera Hsu Shih-Chiehb Lu Yun-Ju Chou, Yuna-Tanga.
    https://svnweb.cern.ch/trac/atlasperf/browser/CombPerf/FlavorTag/n otes/Winter_2016/vrtrackjet_calibration/btagmethod.pdf. Retrieved May 21, 2019.
    [2] Andrew Stuart Bell, Andrea Coccaro, Kristian Gregersen, Jelena Jovicevic, Michael Kagan, Liza Mijovic, Ines Ochoa, Giacinto Piacquadio, and Tim Scanlon. Calibration of b-tagging using di-leptonic tt ̄events produced in pp collisions at √s = 13 TeV and a combinatorial likelihood approach. Technical Report ATL-COM-PHYS-2016-1598, CERN, Geneva, Nov 2016.
    [3] Philippe Mouche. Overall view of the LHC. Vue d’ensemble du LHC. Jun 2014. General Photo.
    [4] Fabian Kuger (CC BY-NC-SA 4.0). https://www.researchgate.net/figure/Th e-ATLAS-detector-and-its-subsystems-The-two-figures-on-the-right-vis ualize-two_fig82_318981598. Retrieved May 4, 2019.
    [5] JabberWok (CC BY-SA 3.0). https://commons.wikimedia.org/wiki/File:Ps eudorapidity2.png. Retrieved May 5, 2019.
    [6] Joao Pequenao. Computer generated image of the whole ATLAS detector. Mar 2008.
    [7] Maximilien Brice. Installing the ATLAS calorimeter. Vue centrale du d ́etecteur ATLAS avec ses huit toroides entourant le calorim`etre avant son d ́eplacement au centre du d ́etecteur. Nov 2005.
    [8] Search for Dark Matter Produced in Association with a Higgs Boson decaying to b ̄b at √s = 13 TeV with the ATLAS Detector using 79.8 fb−1 of proton-proton collision data. Technical Report ATLAS-CONF-2018-039, CERN, Geneva, Jul 2018.
    [9] Variable Radius, Exclusive-kT, and Center-of-Mass Subjet Reconstruction for Higgs(→ b ̄b) Tagging in ATLAS. Technical Report ATL-PHYS-PUB-2017-010, CERN, Geneva, Jun 2017.
    [10] John Butler, Pai-hsien Jennifer Hsu, Shih-Chieh Hsu, Sandra Kortner, Yun-Ju Lu, Samuel Meehan, Dilia Maria Portillo Quintero, Patrick Rieck, Rainer Rohrig, Nikola Lazar Whallon, Veronica Fabiani, Frank Filthaut, Cheng-hsin Han, Po-shan Shih, Yu-hsin Chan, Andrea Matic, Jeanette Lorenz, Efe Yigitbasi, Ruth Pottgen, Eleni Skorda, and K. Technical report.
    [11] Gianfranco Bertone, Dan Hooper, and Joseph Silk. Particle dark matter: Evidence, candidates and constraints. Phys. Rept., 405:279–390, 2005.
    [12] F. Englert and R. Brout. Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett., 13:321–323, 1964.
    [13] Peter W. Higgs. Broken symmetries, massless particles and gauge fields. Phys. Lett., 12:132–133, 1964.
    [14] Peter W. Higgs. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett., 13:508–509, 1964.
    [15] G.S. Guralnik, C.R. Hagen, and T.W.B. Kibble. Global conservation laws and mass- less particles. Phys. Rev. Lett., 13:585–587, 1964.
    [16] Peter W. Higgs. Spontaneous symmetry breakdown without massless bosons. Phys. Rev., 145:1156–1163, 1966.
    [17] T.W.B. Kibble. Symmetry breaking in non-Abelian gauge theories. Phys. Rev., 155:1554–1561, 1967.
    [18] ATLAS Collaboration. Atlas insertable b-layer technical design report. ATLAS- TDR-19, 2010.
    [19] Lyndon Evans and Philip Bryant. LHC Machine. JINST, 3:S08001, 2008.
    [20] David Krohn, Jesse Thaler, and Lian-Tao Wang. Jets with Variable R. JHEP,
    06:059, 2009.
    [21] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. The anti-kt jet clustering algorithm. JHEP, 04:063, 2008.
    [22] Expected performance of the ATLAS b-tagging algorithms in Run-2. Technical Re- port ATL-PHYS-PUB-2015-022, CERN, Geneva, Jul 2015.
    [23] F. Zwicky. Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica Acta, 6:110–127, Jan 1933.
    [24] F. Zwicky. On the Masses of Nebulae and of Clusters of Nebulae. ApJ, 86:217, Oct 1937.
    [25] Morad Aaboud et al. Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector. JHEP, 01:126, 2018.
    [26] Albert M Sirunyan et al. Search for dark matter produced with an energetic jet or a hadronically decaying W or Z boson at √s = 13 TeV. JHEP, 07:014, 2017.
    [27] Morad Aaboud et al. Search for dark matter at √s = 13 TeV in final states contain- ing an energetic photon and large missing transverse momentum with the ATLAS detector. Eur. Phys. J., C77(6):393, 2017.
    [28] Albert M Sirunyan et al. Search for new physics in the monophoton final state in proton-proton collisions at √s = 13 TeV. JHEP, 10:073, 2017.
    [29] Search for new phenomena in the Z(→ ll) + Emiss final state at √s = 13 TeV with T
    the ATLAS detector. Technical Report ATLAS-CONF-2016-056, CERN, Geneva, Aug 2016.
    [30] Morad Aaboud et al. Search for dark matter in association with a Higgs boson decaying to b-quarks in pp collisions at √s = 13 TeV with the ATLAS detector. Phys. Lett., B765:11–31, 2017.
    [31] Search for new phenomena in events with missing transverse momentum and a Higgs boson decaying to two photons in pp collisions at s√=13 TeV with the ATLAS detector. Technical Report ATLAS-CONF-2016-087, CERN, Geneva, Aug 2016.
    [32] Georges Aad et al. Search for dark matter produced in association with a Higgs boson decaying to two bottom quarks in pp collisions at √s = 8 TeV with the ATLAS detector. Phys. Rev., D93(7):072007, 2016.
    [33] Matthew John Baca, Sergey Burdin, Carl Gwilliam, Laser Seymour Kaplan, Samuel Meehan, Andrew Mehta, Konstantinos Nikolopoulos, Dilia Maria Portillo Quintero, Arturo Sanchez, Paul Thompson, Nikola Lazar Whallon, Sau Lan Wu, Shih-Chieh Hsu, and Rainer Rohrig. Search for Dark Matter in association with a Higgs boson decaying to b-quarks in pp collisions at √s = 13 TeV with the ATLAS detector. Technical Report ATL-COM-PHYS-2015-1399, CERN, Geneva, Nov 2015.
    [34] Morad Aaboud et al. Search for Dark Matter Produced in Association with a Higgs Boson Decaying to b ̄b using 36 fb−1 of pp collisions at √s = 13 TeV with the ATLAS Detector. Phys. Rev. Lett., 119(18):181804, 2017.
    [35] Samuel Meehan, Rainer Rohrig, Patrick Rieck, Andrew Mehta, Carl Gwilliam, Paul Thompson, Laser Seymour Kaplan, Chen Zhou, Dilia Maria Portillo Quintero, Oleg Brandt, Daniel Isaac Narrias Villar, Stanislav Suchek, Efe Yigitbasi, John Butler, Sau Lan Wu, Sandra Kortner, Sandro De Cecco, Pai-hsien Jennifer Hsu, Yuan-tang Chou, Daniel Guest, Arturos Sanchez Pineda, Shih-Chieh Hsu, Nikola Lazar Whal- lon, Yun-ju Lu, Jike Wang, Veronica Fabiani, Russell James Turner, Konstantinos Nikolopoulos, and Manuel Silva Jr. Search for Dark Matter Produced in Association with a Higgs Boson Decaying to b ̄b at √s = 13 TeV with the ATLAS Detector. Technical Report ATL-COM-PHYS-2016-1484, CERN, Geneva, Oct 2016.
    [36] John F Gunion, Sally Dawson, Howard E Haber, and Gordon L Kane. The Higgs hunter’s guide, volume 80. Brookhaven Nat. Lab., Upton, NY, 1989. In the second printing (1990) by Perseus Books in the collection Frontiers in physics, no 80, a number of errors and omissions are corrected and the references at the end of each chapter are updated. A paperback reprint of the 1990 edition has been published in 2000.
    [37] Object-based missing transverse momentum significance in the ATLAS detector. Technical Report ATLAS-CONF-2018-038, CERN, Geneva, Jul 2018.
    [38] Morad Aaboud et al. Electron and photon energy calibration with the ATLAS detector using 2015–2016 LHC proton-proton collision data. JINST, 14(03):P03017, 2019.
    [39] Georges Aad et al. Muon reconstruction performance of the ATLAS detector in proton–proton collision data at √s =13 TeV. Eur. Phys. J., C76(5):292, 2016.
    [40] Matteo Cacciari and Gavin P. Salam. Pileup subtraction using jet areas. Phys. Lett., B659:119–126, 2008.
    [41] Calibration of b-tagging using dileptonic top pair events in a combinatorial likelihood approach with the ATLAS experiment. Technical Report ATLAS-CONF-2014-004, CERN, Geneva, Feb 2014.

    QR CODE