簡易檢索 / 詳目顯示

研究生: 潘彥全
Pan,Yan Quan
論文名稱: 一個利用直流消除技術的反射式脈衝血氧偵測電路
A Reflective Pulse Oximeter with DC Cancellation Scheme
指導教授: 謝志成
Hsieh,Chih Cheng
口試委員: 蔡嘉明
Tsai,Chia Ming
黃柏鈞
Huang,Po Chiun
鄭桂忠
Tang,Kea Tiong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 66
中文關鍵詞: 脈衝血氧機反射式類比前端直流消除交流放大
外文關鍵詞: pulse oximeter, reflective, analog front end, DC cancellation, AC amplification
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個利用直流消除以及交流放大技術的反射式脈衝血氧偵測電路。此電路將光二極體以及讀出電路整合為一系統單晶片使其有更小的物理尺寸更適合於攜帶式以及物聯網( IoT, Internet of Things)應用。為了計算血氧濃度值,本電路偵測及萃取紅光以及紅外光經過人體組織後的光體積描述圖形(Photoplethysmogram, PPG)訊號的直流及交流部分。
    為了要讀取光體積描述圖形中佔直流部分0.5%~2%的交流訊號,我們實做了一組電流式數位轉類比電路,此電路除了將電流值由類比轉為數位並將其值讀出外,也可持續直接消除光體積描述圖形訊號中的直流部分1秒以利交流訊號讀出。被消除所剩餘的交流訊號利用電容式轉阻放大器,將電流轉換成電壓後,再經由可程式化增益放大器(PGA, Programmable Gain Amplifier)進行放大提升訊雜比,以及將單端訊號轉換成雙端訊號抵抗共模雜訊以符合後端類比轉位的輸入範圍。本電路使用了緩衝直接注入電路(BDI, Buffer Direct Injection)降低等效寄生電容進而大幅降低電容式轉阻放大器中運算放大器的直流增益需求。
    為了驗證本電路,此架構使用世界先進積體電路公司(VIS, Vanguard) 0.18微米1P4M標準互補式金氧半導體製程製作,晶片總面積為3450×2450μm2,擁有128×64光二極體陣列操作於工作電壓1.8V並搭載上述構想的讀出電路原型。量測驗證結果顯示,本論文所提出的反射式血氧前端讀出電路達到7.271nA/Lux的光靈敏度,在0.4nA 最低有效位的設定下,直流消除技術所擁有的誤差量為1 LSB,rms;利用低通濾波器的前提下,交流訊號達到了35.9dB的訊雜比而使得在血氧濃度為96%時在±1σ下能有±0.33%的誤差,並且擁有99.8μW的功率消耗表現。


    This thesis presents a reflective pulse oximetry sensor with DC cancellation and AC amplification scheme. The photodiode integrated sensing chip realizes highly portable and low form factor IoT application. The DC and AC component for both IR and RED LED reflected PPG signal are extracted for oximetry calculation.
    To extract the small AC component of PPG signal, which is about 0.5%~2% of DC component, with a specific resolution, the current DAC is implemented to not only convert the analog current value into digital code for DC code readout but also directly cancel out the DC component more than 1 second. The residue of PPG signal which is composed of AC component and quantization error is converted from current to voltage domain by capacitive transimpedence amplifier (CTIA), and amplified by programmable gain amplifier (PGA) to meet the ADC input range. The buffered direct injection (BDI) is adopted to decrease the DC gain requirement of CTIA OP due to large photodiode parasitic capacitance.
    A prototype of 128×64 photodiode integrated reflective pulse oximeter employed these schemes has been designed and fabricated in VIS 0.18um 1P4M standard CMOS technology with a chip area of 3450×2450μm2, operating under 1.8V for both analog and digital circuits. The measurement result shows the proposed reflective pulse oximeter front end achieves 7.271nA/Lux photosensitivity, 1 LSB,rms DC cancellation noise with LSB option 0.4nA, 35.9dB SNR of AC signal with filter which leads to ±0.33% SpO2 variation in ±1σ at SpO2=96%, and finally it achieves 99.8μW power dissipation.

    摘要 i Abstract ii 致謝 iii Content v List of Figures viii List of Tables xi Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Contribution 2 1.3 Thesis Organization 4 Chapter 2 Background Information 5 2.1 The Principle of Pulse Oximeter 5 2.1.1 Photoplethysmogram (PPG) 5 2.1.2 Oxygen Saturation Information from PPG 6 2.1.2.1. Definition of Oxygen Saturation 6 2.1.2.2. Beer-Lambert’s Law 6 2.1.2.3. Absorption Spectrum of Hemoglobin 7 2.1.2.4. Derivation of SpO2 from PPG 8 2.1.2.5. Validity of Beer’s Law in Pulse Oximetry [11] 10 2.2 Resolution Specification 11 2.3 Overview of Conventional Oximeter System 12 2.4 System Specification 13 2.5 Summary 14 Chapter 3 Proposed DC cancellation and AC Amplification Scheme 15 3.1 DC Cancellation 16 3.2 AC Amplification 19 3.3 Summary 25 Chapter 4 Circuit Implementation of Proposed OXM 26 4.1 System Architecture of Proposed Front End 26 4.2 Capacitive Transimpedence Amplifier (CTIA) 28 4.2.1 OP Implementation 30 4.3 Buffer Direct Injection (BDI) [15] 31 4.3.1 OP Implementation 33 4.4 Programmable Gain Amplifier (PGA) 36 4.4.1 OP Implementation 37 4.5 Summary 38 Chapter 5 Measurement Results 40 5.1 Chip Implementation 40 5.2 Measurement Environment Setup 41 5.2.1 PCB 42 5.2.2 System In package (SIP) Setup 43 5.3 DC cancellation 44 5.3.1 Lux Transfer Curve Response 44 5.3.2 Noise Performance 45 5.3.3 Noise Performance Discussion 46 5.4 AC Amplification 49 5.4.1 PGA Transfer Curve 49 5.4.2 LED with AWG Test 50 5.4.3 AC Mode Random Noise Analysis 52 5.4.3.1. AC Random Noise in Dark 52 5.4.3.2. AC Random Noise in Static Illumination 52 5.4.3.3. Transient Noise Simulation 53 5.4.3.4. Brief Summary 54 5.5 Oxygen Saturation Measurement 55 5.5.1 Captured PPG Waveform 55 5.5.2 Calibration of R-SpO2 56 5.6 Summary 58 Chapter 6 Conclusion and Future Work 61 6.1 Conclusion 61 6.2 Future Work 62 Bibliography 65

    [1] Nonin Medical Inc. (2016). Pulse Oximetry (SpO2) Monitoring Solution [Online]. Available: http://www.nonin.com/PulseOximetry
    [2] M. Tavakoli, L. Turicchia and R. Sarpeshkar, "An Ultra-Low-Power Pulse Oximeter Implemented With an Energy-Efficient Transimpedance Amplifier," IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 1, pp. 27-38, Feb. 2010.
    [3] K. Glaros and E. Drakakis, "A Sub-mW Fully-Integrated Pulse Oximeter Front-End," IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 3, pp. 363-375, Jun. 2013.
    [4] Z. Lu, et al., "A Prototype of Reflection Pulse Oximeter Designed for Mobile Healthcare," IEEE J. Biomedical and Health Informatics, no.99, pp.1-1 Aug. 2015.
    [5] K. Li and S. Warren, "A wireless reflectance pulse Oximeter with digital baseline control for Unfiltered Photoplethysmograms," IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 3, pp. 269–278, Jun. 2012.
    [6] Y.-C. Chiou, S.-E. Hsieh, Y.-Q. Pan, C.-C. Kuo, and C.-C. Hsieh, “An Integrated CMOS Optical Sensing Chip for Multi-Bio-Signal Detections,” submitted for publication.
    [7] T. Tamura, Y. Maeda, M. Sekine, and M. Yoshida, “Wearable Photoplethysmographic Sensors—Past and Present,” Electronics, vol. 3, pp. 282-302, Apr. 2014.
    [8] S. Prahl (1998, Mar.). Tabulated Molar Extinction Coefficient for Hemoglobin in Water [Online]. Available: http://omlc.org/spectra/hemoglobin/summary.html
    [9] J. G. Webster, Design of pulse oximeters. New York, NY: Taylor & Francis, 1997.
    [10] Nonin Medical Inc. (2015). Onyx® Vantage 9590 Finger Pulse Oximeter [Online]. Available: http://www.nonin.com/documents/IFUManuals/9590_ENG.pdf
    [11] T. Dastjerdi, "An Analog VLSI Front End for Pulse Oximetry," Ph.D. dissertation, Dept. Elect. Eng. and CS., M.I.T., Cambridge, MA, 2006.
    [12] Texas Instruments Inc. (July 2014). AFE4400 Integrated Analog Front-End for Heart Rate Monitors and Low-Cost Pulse Oximeters (Rev. H) [Online]. Available: http://www.ti.com/product/AFE4400/datasheet
    [13] D. H. Woo, S. G. Kang and H. C. Lee, "Novel current-mode background suppression for 2-D LWIR applications," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 9, pp. 606-610, Sep. 2005.
    [14] G. Xu and J. Yuan, "Performance analysis of general charge sampling," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 2, pp. 107-111, Feb. 2005.
    [15] N. Bluzer and R. Stehlik, “Buffered direct injection of photocurrents into charge coupled devices,” IEEE Trans. Electron Devices, vol. 25, no. 2, pp. 160-166, Feb. 1978.
    [16] Hamamatsu Photonics K.K. Photodiode Technical Information [Online]. Available: http://people.na.infn.it/~garufi/didattica/CorsoAcq/Trasp/Lezione3/photodiode_technical_information.pdf
    [17] E. Winokur, T. O'Dwyer and C. Sodini, "A Low-Power, Dual-Wavelength Photoplethysmogram (PPG) SoC With Static and Time-Varying Interferer Removal," IEEE Trans. Biomed. Circuits Syst., vol. 9, no. 4, pp. 581-589, Aug. 2015.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE