簡易檢索 / 詳目顯示

研究生: 簡國航
論文名稱: 聚乙二醇-聚癸二酸酐二團聯共聚物合成及其高分子微胞之研究
Polymeric micelles from poly(ethylene glycol-co-sebacic acid) diblock copolymer
指導教授: 朱一民
I-Ming Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 50
中文關鍵詞: 高分子微胞聚酸酐團聯共聚物藥物釋放系統
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物可分解性人工合成之高分子因具有生物可分解性、生物可相容性、無毒性之特點,適合在藥物投遞系統及組織工程上研究發展。其中,兩性團聯共聚高分子在水相中具有自組成高分子微胞的特性,在藥物釋放研究上進展相當迅速。
    聚酸酐為用酸酐鍵結而成之高分子材料,具有上述生物可分解性人工合成之高分子的性質,且尤其表面降解的特性,做為藥物載體時具有良好、易控制釋放的優點而廣受到醫藥學界的重視;其中聚癸二酸酐(poly(sebacic acid), PSA)因其化學結構為簡單的八個碳氫(-CH2-)雙酸酐長碳鏈聚合體,在文獻中,是聚酸酐材料中最常研究、應用和其他材料鍵結的材料;聚乙二醇(poly(ethylene glycol), PEG)本身為一聚醚類高分子,具有高親水性、不易分解性和高生物相容性,和疏水性材料鍵結後會形成兩性團聯高分子,在水相中會自組裝成高分子微胞,增加nanoparticles在血液中的立體阻礙性,加強在人體中的循環時間,文獻中指出[1],具有高分子量的PEG5000比PEG2000會有較佳的立體阻礙性,不易被巨噬細胞所吞噬。本實驗中,首先以具雙酸單體sebacic acid酸酐化後,跟poly(ethylene glycol) methyl ether(mPEG5000)進行熔融縮合反應,形成親疏水性二團聯共聚物mPEG-PSA,其分子量在12900左右。因為mPEG-PSA具有兩性特質,利用乳化法在水相中自組裝(self-assembly)成奈米尺寸高分子微胞,經冷凍乾燥後粒徑大小在185nm左右,而包覆疏水性抗癌藥物紫杉醇後,粒徑會加大到215nm,並以AFM觀察所製備的高分子微胞之形態。在降解方面,因聚酸酐對水及熱的不穩定性,而PES14又具有親水性mPEG易使水滲透至內部情形下,在pH=7.4溫度37℃的磷酸緩衝溶液環境,大約一天時間即降解完畢;在紫杉醇釋放方面,一開始的3小時內會快速釋到50%左右,之後直至第7天為止,會從50%慢慢釋放至80%左右。比較有無包覆紫杉醇的粒徑來看,包覆紫杉醇後會穩定內部核心使粒徑穩定度會比未包覆的好;但不論在何溫度,有無包覆紫杉醇情形下,從溶液外觀來看,高分子微胞不會有雲霧狀聚集產生,雖然實驗中在37℃及常溫下測得的粒徑會逐漸增加,但增加輻度不大(<500nm),且一段時間後,高分子微胞水溶液會呈現透明澄清,推論,其粒徑變化應是PSA降解後,整個nanoparticles結構變化的結果。


    摘要 目錄 圖目錄 表目錄 第一章 文獻回顧 1.1 生醫材料 1.2 生物可分解性高分子 1.2.1 生物可分解性高分子的種類 1.3 聚酸酐 1.3.1 聚酸酐的合成 1.4 高分子微胞 1.4.1 微胞中親疏水性材料的種類 1.4.2 製備微胞 1.4.3 臨界微胞濃度 1.4.4 高分子微胞的穩定性 1.5 紫杉醇的來源及應用 第二章 研究動機與目的 第三章 實驗部份 3.1實驗藥品 3.2實驗儀器 3.3實驗方法 3.3.1酸酐化sebacic acid(preSA)(預聚物) 3.3.2poly(ethylene glycol methyl ether –co- sebacic acid) (m PEG -PSA )聚合方法 3.3.3結構、分子量鑑定及熱分析鑑定方法 3.3.4 mPEG-PSA的CMC之量測 3.3.5利用乳化法(emulsion)製備高分子微胞(polymeric micelles) 3.3.6利用乳化法包覆疏水性抗癌藥物紫杉醇(taxol) 3.3.7高分子微胞降解、taxol 在微胞的釋放及其粒徑穩定度 第四章 初步結果與討論 4.1 mPEG-PSA團聯共聚物結構鑑定及性質量測 4.1.1預聚酸酐pre-SA 4.1.2 mPEG-PSA結構鑑定 4.1.3 GPC分析結果 4.1.4 DSC分析結果 4.2 mPEG-PSA的CMC 4.3高分子微胞及其冷凍乾燥後的粒徑分析 4.4高分子微胞的表面化學結構 4.5高分子微胞的外觀形態(morphology) 4.6高分子微胞的降解及其粒徑穩定度 4.7 taxol在micelles的釋放及其粒徑穩定度 第五章 結論與未來展望 參考文獻 附錄A 螢光染劑1-pyrenehexanoic acid的結構 附錄B sebacic acid在HPLC的檢量線 附錄C taxol在HPLC的檢量線

    Bazile D.V., Prud’homme C., Bassoulet M-T., Marlard M., Slenlehauer G., Veillard M., “Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phargocytes system”, J. Pharm. Sci., 84(1995) 493-498.

    Clemson Advisory Board for Biomaterials, “Definition of the word biomaterial”, Thc 6th Annnal Intermalionel Biomaterial Symposium, April 20-24, 1974.

    Chasin M., Langer R., “Biodegradable polymers as drug delivery system”, Marcel Dekker, Inc., New York, 1990.

    Hollinger J.O., “Biomedical applications of synthetic biodegradable polymers”, CRC Press, Inc., Boca Raton, 1995.

    Kumar N., Ravilkumar M. N. V., Domb A. J., “Biodegradable block polymers”, Adv. Drug Deliv. Rev., 53 (2001) 23-44.

    Brem H., Tamargo R.J., Olivi A., “Delivery of drugs to the brain by use of a sustained-release polyanhydride polymer system”, New Technol. Concepts Reducing Drug Toxic., (1993) 33-39.

    Hill J.W., Carothers H.W., “Studies on polymerization and ring formation. XIV. A linear superpolyanhydride and a cyclic dimeric anhydride from sebacic acid”, J. Am. Chem. Soc., 54 (1932) 5169.

    Conix A., “Aromatic poly(anhydirde): a new class of high melting fiber-forming polymers”, J. Polym. Sci.: Part A, 29 (1958) 343-353.

    Yoda N., “Synthesis of poly(anhydrides). Poly(anhydride) of five-membered heterocyclic dibasic acids”, Macromol. Chem., 55 (1962) 174-190.

    Yoda N., “Synthesis of poly(anhydrids): Crystalline and high melting poly(amide) poly(anhydride) of methylene bis(p-carboxyphenyl) amide”, J. Polym. Sci., Part A 1, (1963) 1323-1338.

    Rosen H.B., Chang J., Wnek G.E., Linhardt R.J., Langer R., “Bioerodible polyanhydrides for controlled drug delivery”, Biomaterials, 4 (1983) 131-133.

    Kumar N., Langer R., Domb A. J., ” Polyanhydrides: an overview”, Adv. Drug Deliv. Rev., 54 (2002) 889-910.

    Domb A.J., Amselem S., Shah J., Maniar M., ”Polyanhydrides- Synthesis and Characterization”, Adv. Polym. Sci., 107 (1993) 93-41.

    Glen S. Kwon, Kazunori Kataoka, “Block copolymer micelles as long-circulating drug vehicles”, Adv. Drug Deliv. Rev., 16 (1995) 295-309.

    Allen Cristine, Maysinger Dusica, Adi Eisenberg, “Nano-engineering block copolymer aggregates for drug delivery”, Colloids and Surfaces B: Biointerfaces, 16 (1999) 3-27.

    Woodle, M.C. and Lasic, D.D., ”Sterically stabilized liposomes”, Biochim. Biophys. Acta., 1113(1992) 171-199.

    Torchilin V.P. and Papisov M.I., “Hypothesis: why do polyethylene glycol-coated liposomes circulate so long?”, J. Liposome Res., 4(1994) 823-833.

    Gref R., Domb A.J., Quellec P., Blunk T., Muller R.H., Verbavatz J.M., Langer R., “The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres”, Adv. Drug Deliv. Rev., 16(1995), 215-233.

    Kabanov A. V., Nazarov I.R., Astafieva I.V., Batrakova E.V., Alakhov V.Y., Yaroslavov A.A., Kabanov V.A., ”Micelle formation and solubilization of fluorescent-probes in poly (oxyethylene -B-oxypropylene-B-oxyehtylene) solutions“, Macromolecules, 28 (1995) 2303-2314.

    La S.B., Okano T., Kataoka K., ”Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)-poly(beta-benzyl L-aspartate) block copolymer micelles“, J. Pharm. Sci., 85(1996) 85-90.

    Kalyanasundaram K., Thomas J.K., “Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems”, J. Am. Chem. Soc., 99 (1997) 2039-2044.

    Yokoyama M., Fukushima S., Uehara R., Okamoto K., Kataoka K., Sakurai Y., Okano T., “Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor”, J. Control. Rel., 50(1998) 79-92.

    Yu Y., Allen C., Chijiwa S., Maysinger D., Eisenberg A., Macromolecules, submitted for publication.

    Kwon G.S., Naito M., Kataoka K., Yokoyama M., Sakurai Y., Okano T., “Block copolymer micelles as vehicles for hydrophobic drugs ”, Colloids and Surfaces B: Biointerfaces, 2(1994) 429-434.

    Creutz S., Van Stam J., De Schryver F.C., Jerome R., “Exchange of polymer molecules between block copolymer micelles studied by emission spectroscopy. A method for the quantification of unimer exchange rates”, Macromolecules, 30(1997) 4078-4083.

    Yokoyama M., Fukushima S., Uehara R., Okamoto K., Kataoka K., Sakurai Y., Okano T., “Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor”, J. Control. Rel., 50(1998) 79-92.

    Georg G.I., Chen T.T., Ojima I. and Vyas D.M., “Taxane anticancer agent”, Am. Chem. Soc., 1995.

    Grever M.R., Schepartz S.A. and Chabner B.A., “The national-Cancer-Institute-Cancer drug discovery and development program”, Seminar in Oncol., 19(1992) 622-638.

    ”NCI Fact Sheet: Paclitaxel(taxol) and related anticancer drugs”, 2002.2.

    Nicolaou K.C., Dai W.M. and Guy R.K., “Taxol and biology of taxol”, Angew. Chem. Int. Ed. Engl., 33(1994) 15-44.

    Rowinsky E.K., Donehower R.C., “Drug therapy: Paclitaxel(taxol)”, The New England Journal of Medicine, Apr 13(1995) 1004-1114.

    Nappi R., Reata L., Loizzi P., “Primary carcinoma of the fallopian tube: report on two cases”, Eur. J. Obstet. Gynecol. Reprd. Biol., 70(1996) 93-96.

    Onyuksel H.A., Ramakrishnan S., Chai H.B. and Pezzuto J.M., “A mixed micellar formulation suitable for the parenteral administration of taxol” , Pharmace. Res., 11(1994) 206-212.

    Weiss R.B., Donehower R.C., Wiernik P.H., Ohnuma T., Gralla R.J., Trump L.D., Baker J.R., Van Echo D.A., Von Hoff D.D., and Leyland J.B., “Hypersensitivity reaction from taxol”, J. Clin. Oncol., 8(1990) 1263-1268.

    Zhao C. L., Winnilk M. A., “Fluorescence probe technique used to study micelle formation in water-soluble block copolymers”, Langmuir, 6 (1990) 514-516.

    Li H.Y., Chen Y.F., Xie Y.S., “Nanocomposites of cross-linking polyanhydrides and hydroxyapatite needle:mechanical and degradable properties”, Materials Letters, 58 (2004) 2819-2823.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE