研究生: |
鄭閔謙 |
---|---|
論文名稱: |
隨機三人聯合機制所建構的社群網路形成過程 Formation of Social Networks by Random Triadic Attachment |
指導教授: | 李端興 |
口試委員: |
張正尚
黃之浩 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 29 |
中文關鍵詞: | 分支度 、群聚係數 、網路模型 、社群網路 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中,我們探討了社群網路結構的問題,並建立了一個網路模型。
我們提出的產生網路模型的機制有兩個,分別叫做triadic attachment和triadic closure,我們分別對這兩個網路分析其平均節點分支度(Degree)與群聚係數。
在此,我們利用兩個變數來調控平均節點分支度與群聚係數。
In this paper we derive a network formation model for social network. First, we create a fully-connected network with m0 vertices. At each time step, a new vertex is added into the network, and randomly selects one existing vertex to establish an edge with equal probability. Then, each neighbors of attached vertex forms an edge with the new vertex with probability a. We call this operation triadic attachment. We derive the mean degree and the clustering coefficient for this model. We also analyze the stationary mean degree and the stationary clustering coefficient. Furthermore, we extend this model by adding edges to pairs of existing vertices. We derive the mean degree and the clustering coefficient for this extended model. Finally we show that the parameters of our model can be chosen such that the mean degree and the clustering coefficient match very well those of popular online social networks such as Facebook, Flickr and Orkut.
[1] A.-L. Barab´asi and R. Albert, “Emergence of Scaling in Random Networks,” Science,
286, 509-512, 1999.
[2] F. Chung and L. Lu, “Complex graphs and networks,” Regional Conference Series
in Mathematics, Number 107, American Mathematical Society, 2004.
[3] G. Cs´ardi and T. Nepusz, “The igraph Software Package for Complex Network Research,”
InterJournal Complex Systems, 1695, 2006.
[4] C. C. Foster, A. Rapoport and C. J. Orwant, “A Study of Large Sociogram II;
Elimination of Free Parameters,” Behav. Sci., 8, 56, 1963.
[5] S. Ghahramani, “Fundamentals of Probability with Stochastic Processes,” third edition,
Pearson Prentice Hall, 2005.
[6] P. Holme and B. J. Kim, “Growing Scale-Free Networks with Tunable Clustering,”
Physical Review E, Vol. 65, 026107, 2002.
[7] B. Kirman, S. Lawson and C. Linehan, “Gaming on and off the Social Graph: The
Social Structure of Facebook Games,” 2009 International Conference on Computa-
tional Science and Engineering.
[8] S. Milgram, “The Small World Problem,” Psychol. Today, 2, 60-67, 1967.
[9] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, B. Bhattacharjee, “Measurement
and Analysis of Online Social Networks,” Proceedings of the 5th ACM/Usenix
Internet Measurement Conference, San Diego, CA, 2007.
[10] M.E.J. Newman, “Clustering and Preferential Attachment in Growing Networks,”
Phys. Rev. E 64, 025102, 2001.
[11] M.E.J. Newman, “Networks: An Introduction,” Oxford, 2010.
[12] G. Szab´o, M. Alava, and J. Kert´esz, “Structural Transitions in Scale-Free Networks,”
Physical Review E, Vol. 67, 056102, 2003.
[13] R. Toivonen, J.-P. Onnena, J. Saram¨aki. K. Hyv¨onen, and K. Kaski, “A Model For
Social Networks,” Physica A, 371, 851–860, 2006.
[14] B. Viswanath, A. Mislove, M. Cha and K.P. Gummadi, “On the Evolution of User
Interaction in Facebook,” Proceedings of the 2nd ACM SIGCOMM Workshop on
Social Networks (WOSN’09), 2009.