研究生: |
劉黃翔 Liou-Huang, Siang |
---|---|
論文名稱: |
具有可調整降解特性之光交聯聚乳酸-聚乙二醇/ 聚己內酯-聚乙二醇複合水膠於軟骨細胞載體之研究 Controllable degradation properties of photocrosslinked PLA-b-PEG-b-PLA / PCL-b-PEG-b-PCL complex hydrogels for cell delivery |
指導教授: |
朱一民
Chu, I.M |
口試委員: |
魏毓宏
姚少凌 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 光交聯水膠 、降解特性 、軟骨細胞 |
外文關鍵詞: | Photo-crosslinked Hydrogel, Degradation property, Chondrocyte |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於軟骨缺乏自我修復的能力,因此近年來軟骨治療已變成備受重視的問題,而組織工程技術可能是治療軟骨疾病的解決辦法。組織工程包含了細胞與支架,支架可以提供適合的環境讓組織再生及修復。水膠支架為三維立體網狀結構,其具有高含水率、高質傳效率及可均勻包埋細胞等優點,因此近年來被廣泛使用在組織工程。
本研究擬設計由聚乳酸-聚乙二醇及聚己內酯-聚乙二醇所組成光交聯複合水膠,其具有生物降解性及生物相容性。此光交聯水膠可做為包埋軟骨細胞的軟骨生成支架,研究中將調控不同的聚乳酸-聚乙二醇及聚己內酯-聚乙二醇之混摻比例,以達到適當之降解性質。藉由1H-NMR、FT-IR及GPC確認材料的化學結構,並經由DSC和膠含量確認水膠的基本性質。PBS降解測試中,L50C50及L25C75可維持較適當的降解速率以及減緩環境酸化的問題。由SEM的結果顯示,水膠的孔洞大小隨著降解時間增加而變大。當水膠包埋軟骨後培養於軟骨化培養基內進行觀察,L50C50及L25C75水膠依然表現較理想的降解速率。基因表現則可觀察到各混摻水膠在2週培養的過程中,軟骨蛋白聚糖以及二型膠原蛋白的基因表現會逐漸上升,而一型膠原蛋白的基因表現則會隨著時間增加而逐漸下降,符合關節軟骨之正常分化狀態。由生物化學的組成和組織學結果得知L50C50比起其他混摻水膠而言,有較佳的細胞外間質累積的情形。此研究結果將有助於軟骨組織工程之用的水膠材料開發,未來期望可做為關節軟骨組織工程之應用。
Due to the cartilage’s poor self-repairing capacity, cartilage repairs have become a growing concern. Tissue engineering has been proposed as an alternative method to repair diseased cartilage. Tissue engineering consists of cells and a biodegradable scaffold, the latter provides a suitable environment for tissue repairs and regeneration. Hydrogel scaffolds are three-dimensional in structure and are promising substrates for tissue engineering applications due to their high water content, efficient mass transfer, and ability to homogenously encapsulate cells.
In this work, we fabricated complex biodegradable and biocompatible hydrogels based on PLA-b-PEG-b-PLA (PEL) and PCL-b-PEG-b-PCL (PEC) via photo-crosslinking. These hydrogels can be used as scaffolds for chondrocyte encapsulation in cartilage tissue engineering. This study investigated the effect of the blend ratio of PEL and PEC on the hydrogel properties. The chemical structure of the copolymers can be confirmed by 1H-NMR, FT-IR and GPC. The hydrogel properties were measured by the DSC and gel content. On the degradation behavior in PBS buffer solution, L50C50 and L25C75 had a suitable degradation rate. Excess acidity could be solved through controlled the blend ratio. The same results were showed in chondrogenic medium. The SEM images showed that the pore sizes of the hydrogels were increased as the degradation time. Gene expression of encapsulated chondrocytes with different blend ratio of PEL and PEC demonstrated that aggrecan and collagen II were increased within first 2 weeks. The collagen I were decreased with culture time. Compared to other blend ratio, L50C50 hydrogels revealed a higher level accumulation of cartilage extracellular matrix by biochemical and histological analysis. Results of this study will benefit the development of hydrogel scaffolds in cartilage tissue-engineering.
1. Hench, L.L. and I. Thompson, Twenty-first century challenges for biomaterials. Journal of The Royal Society Interface, 2010. 7: p. 379-391.
2. Hench, L.L. and J. Wilson, Surface-active biomaterials. Science, 1984. 226: p. 630-636.
3. LeGeros, J.P. and R.Z. LeGeros, Dense hydroxyapatite . in an introduction to bioceramics, H. LL and W. J, Editors. 1993, World Scientific: Singapore. p. 139-180.
4. Hench, L.L. and J.M. Polak, Third-generation biomedical materials. Science, 2002. 295: p. 1014-1017.
5. Ma, P.X., R. Zhang, G. Xiao, and R. Franceschi, Engineering new bone tissue in vitro on highly porous poly(α-hydroxyl acids)/hydroxyapatite composite scaffolds. Journal of Biomedical Materials Research, 2001. 54: p. 284-293.
6. Kawahara, H., M. Hirabayashi, and T. Shikita, Single crystal alumina for dental implants and bone screws. J Biomed Mater Res, 1980. 14(5): p. 597-605.
7. Kulkarni, R.K., E.G. Moore, A.F. Hegyeli, and F. Leonard, Biodegradable poly(lactic acid) polymers. Journal of Biomedical Materials Research, 1971. 5(3): p. 169-181.
8. Cochran, G.V., Effects of internal fixation plates on mechanical deformation of bone. Surg Forum, 1969. 20: p. 469-471.
9. Frazza, E.J. and E.E. Schmitt, A new absorbable suture. J Biomed Mater Res, 1971. 5(2): p. 43-58.
10. Lu, L., S.J. Peter, M.D. Lyman, H.L. Lai, S.M. Leite, J.A. Tamada, S. Uyama, J.P. Vacanti, R. Langer, and A.G. Mikos, In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams. Biomaterials, 2000. 21(18): p. 1837-1845.
11. Bergsma, J.E., F.R. Rozema, R.R. Bos, G. Boering, W.C. de Bruijn, and A.J. Pennings, In vivo degradation and biocompatibility study of in vitro pre-degraded as-polymerized polyactide particles. Biomaterials, 1995. 16(4): p. 267-274.
12. Hasirci, V., K. Lewandrowski, J.D. Gresser, D.L. Wise, and D.J. Trantolo, Versatility of biodegradable biopolymers: degradability and an in vivo application. J Biotechnol, 2001. 86(2): p. 135-150.
13. He, F., S. Li, M. Vert, and R. Zhuo, Enzyme-catalyzed polymerization and degradation of copolymers prepared from ϵ-caprolactone and poly(ethylene glycol). Polymer, 2003. 44(18): p. 5145-5151.
14. Holland, S.J., B.J. Tighe, and P.L. Gould, Polymers for biodegradable medical devices. 1. The potential of polyesters as controlled macromolecular release systems. Journal of Controlled Release, 1986. 4(3): p. 155-180.
15. Vert, M., S.M. Li, G. Spenlehauer, and P. Guerin, Bioresorbability and biocompatibility of aliphatic polyesters. Journal of Materials Science: Materials in Medicine, 1992. 3(6): p. 432-446.
16. Tsuji, H., Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci, 2005. 5(7): p. 569-597.
17. Chen, C.C., J.Y. Chueh, H. Tseng, H.M. Huang, and S.Y. Lee, Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials, 2003. 24(7): p. 1167-1173.
18. Hollinger, J.O. and G.C. Battistone, Biodegradable bone repair materials. Synthetic polymers and ceramics. Clin Orthop Relat Res, 1986(207): p. 290-305.
19. Peña, J., T. Corrales, I. Izquierdo-Barba, A.L. Doadrio, and M. Vallet-Regí, Long term degradation of poly(ɛ-caprolactone) films in biologically related fluids. Polymer Degradation and Stability, 2006. 91(7): p. 1424-1432.
20. Sawhney, A.S., C.P. Pathak, J.J. van Rensburg, R.C. Dunn, and J.A. Hubbell, Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention. J Biomed Mater Res, 1994. 28(7): p. 831-838.
21. Tan, H. and K.G. Marra, Injectable, Biodegradable Hydrogels for Tissue Engineering Applications. Materials, 2010. 3(3): p. 1746-1767.
22. Nicodemus, G.D., I. Villanueva, and S.J. Bryant, Mechanical stimulation of TMJ condylar chondrocytes encapsulated in PEG hydrogels. J Biomed Mater Res A, 2007. 83(2): p. 323-331.
23. Brown, C.D., P.S. Stayton, and A.S. Hoffman, Semi-interpenetrating network of poly(ethylene glycol) and poly(D,L-lactide) for the controlled delivery of protein drugs. J Biomater Sci Polym Ed, 2005. 16(2): p. 189-201.
24. Weber, L.M., C.Y. Cheung, and K.S. Anseth, Multifunctional pancreatic islet encapsulation barriers achieved via multilayer PEG hydrogels. Cell Transplant, 2008. 16(10): p. 1049-1057.
25. Cruise, G.M., O.D. Hegre, F.V. Lamberti, S.R. Hager, R. Hill, D.S. Scharp, and J.A. Hubbell, In vitro and in vivo performance of porcine islets encapsulated in interfacially photopolymerized poly(ethylene glycol) diacrylate membranes. Cell Transplant, 1999. 8(3): p. 293-306.
26. Hern, D.L. and J.A. Hubbell, Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J Biomed Mater Res, 1998. 39(2): p. 266-276.
27. Burdick, J.A. and K.S. Anseth, Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials, 2002. 23(22): p. 4315-4323.
28. Mann, B.K., A.S. Gobin, A.T. Tsai, R.H. Schmedlen, and J.L. West, Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials, 2001. 22(22): p. 3045-3051.
29. Lee, W.C., Y.C. Li, and I.M. Chu, Amphiphilic poly(D,L-lactic acid)/poly(ethylene glycol)/poly(D,L-lactic acid) nanogels for controlled release of hydrophobic drugs. Macromol Biosci, 2006. 6(10): p. 846-854.
30. Xiao, Y., H. Qian, W.G. Young, and P.M. Bartold, Tissue engineering for bone regeneration using differentiated alveolar bone cells in collagen scaffolds. Tissue Eng, 2003. 9(6): p. 1167-1177.
31. Darling, E.M. and K.A. Athanasiou, Biomechanical strategies for articular cartilage regeneration. Ann Biomed Eng, 2003. 31(9): p. 1114-1124.
32. Benya, P.D. and J.D. Shaffer, Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell, 1982. 30(1): p. 215-224.
33. Mayne, R., M.S. Vail, P.M. Mayne, and E.J. Miller, Changes in type of collagen synthesized as clones of chick chondrocytes grow and eventually lose division capacity. Proc Natl Acad Sci U S A, 1976. 73(5): p. 1674-1678.
34. von der Mark, K., V. Gauss, H. von der Mark, and P. Muller, Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature, 1977. 267(5611): p. 531-532.
35. Li, Y., J. Rodrigues, and H. Tomas, Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem Soc Rev, 2012. 41(6): p. 2193-2221.
36. Tan, H., L. Lao, J. Wu, Y. Gong, and C. Gao, Biomimetic modification of chitosan with covalently grafted lactose and blended heparin for improvement of in vitro cellular interaction. Polymers for Advanced Technologies, 2008. 19(1): p. 15-23.
37. Berger, J., M. Reist, J.M. Mayer, O. Felt, N.A. Peppas, and R. Gurny, Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm, 2004. 57(1): p. 19-34.
38. Mao, J., L. Zhao, K. De Yao, Q. Shang, G. Yang, and Y. Cao, Study of novel chitosan-gelatin artificial skin in vitro. J Biomed Mater Res A, 2003. 64(2): p. 301-308.
39. Ma, J., H. Wang, B. He, and J. Chen, A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials, 2001. 22(4): p. 331-336.
40. Lee, K.Y. and D.J. Mooney, Hydrogels for tissue engineering. Chem Rev, 2001. 101(7): p. 1869-1879.
41. Smidsrød, O. and G. Skja˚k-Br˦k, Alginate as immobilization matrix for cells. Trends in Biotechnology, 1990. 8(0): p. 71-78.
42. Stevens, M.M., H.F. Qanadilo, R. Langer, and V. Prasad Shastri, A rapid-curing alginate gel system: utility in periosteum-derived cartilage tissue engineering. Biomaterials, 2004. 25(5): p. 887-894.
43. Kuo, C.K. and P.X. Ma, Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials, 2001. 22(6): p. 511-521.
44. Bouhadir, K.H., K.Y. Lee, E. Alsberg, K.L. Damm, K.W. Anderson, and D.J. Mooney, Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol Prog, 2001. 17(5): p. 945-950.
45. Kong, H.J., E. Alsberg, D. Kaigler, K.Y. Lee, and D.J. Mooney, Controlling Degradation of Hydrogels via the Size of Crosslinked Junctions. Advanced Materials, 2004. 16(21): p. 1917-1921.
46. Williams, C.G., A.N. Malik, T.K. Kim, P.N. Manson, and J.H. Elisseeff, Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials, 2005. 26(11): p. 1211-1218.
47. Azevedo, H.S., F.M. Gama, and R.L. Reis, In vitro assessment of the enzymatic degradation of several starch based biomaterials. Biomacromolecules, 2003. 4(6): p. 1703-1712.
48. Calvert, P.D., Polymer degradation and stabilisation. N. Grassie and G. Scott, Cambridge University Press, Cambridge, 1985. British Polymer Journal, 1986. 18(4): p. 278-278.
49. Göpferich, A., Mechanisms of polymer degradation and erosion. Biomaterials, 1996. 17(2): p. 103-114.
50. Pitt, C.G., M.M. Gratzl, G.L. Kimmel, J. Surles, and A. Schindler, Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (epsilon-caprolactone), and their copolymers in vivo. Biomaterials, 1981. 2(4): p. 215-220.
51. Huffman, K.R. and D.J. Casey, Effect of carboxyl end groups on hydrolysis of polyglycolic acid. Journal of Polymer Science: Polymer Chemistry Edition, 1985. 23(7): p. 1939-1954.
52. West, J.L. and J.A. Hubbell, Polymeric Biomaterials with Degradation Sites for Proteases Involved in Cell Migration. Macromolecules, 1998. 32(1): p. 241-244.
53. Gomes, M.E., R.L. Reis, A.M. Cunha, C.A. Blitterswijk, and J.D. de Bruijn, Cytocompatibility and response of osteoblastic-like cells to starch-based polymers: effect of several additives and processing conditions. Biomaterials, 2001. 22(13): p. 1911-1917.
54. Salgado, A.J., O.P. Coutinho, and R.L. Reis, Novel starch-based scaffolds for bone tissue engineering: cytotoxicity, cell culture, and protein expression. Tissue Eng, 2004. 10(3-4): p. 465-474.
55. Pereira, C.S., A.M. Cunha, R.L. Reis, B. Vazquez, and J. San Roman, New starch-based thermoplastic hydrogels for use as bone cements or drug-delivery carriers. J Mater Sci Mater Med, 1998. 9(12): p. 825-833.
56. Mochizuki, M., M. Hirano, Y. Kanmuri, K. Kudo, and Y. Tokiwa, Hydrolysis of polycaprolactone fibers by lipase: Effects of draw ratio on enzymatic degradation. Journal of Applied Polymer Science, 1995. 55(2): p. 289-296.
57. Cai, Q., G. Shi, J. Bei, and S. Wang, Enzymatic degradation behavior and mechanism of poly(lactide-co-glycolide) foams by trypsin. Biomaterials, 2003. 24(4): p. 629-638.
58. Kumar, A. and R.A. Gross, Candida antartica lipase B catalyzed polycaprolactone synthesis: effects of organic media and temperature. Biomacromolecules, 2000. 1(1): p. 133-138.
59. Tietz, N.W. and D.F. Shuey, Lipase in serum--the elusive enzyme: an overview. Clin Chem, 1993. 39(5): p. 746-756.
60. Moller-Peterson, J. and F. Dati, Renal handling of pancreatic lipase. Clin Chem, 1984. 30(2): p. 343-344.
61. Fukuzaki, H., M. Yoshida, M. Asano, and M. Kumakura, Synthesis of copoly(d,l-lactic acid) with relatively low molecular weight and in vitro degradation. European Polymer Journal, 1989. 25(10): p. 1019-1026.
62. Reeve, M.S., S.P. McCarthy, M.J. Downey, and R.A. Gross, Polylactide stereochemistry: effect on enzymic degradability. Macromolecules, 1994. 27(3): p. 825-831.
63. Fukuzaki, H., M. Yoshida, M. Asano, M. Kumakura, T. Mashimo, H. Yuasa, K. Imai, and Y. Hidetoshi, Synthesis of low-molecular-weight copoly(l-lactic acid/ɛ-caprolactone) by direct copolycondensation in the absence of catalysts, and enzymatic degradation of the polymers. Polymer, 1990. 31(10): p. 2006-2014.
64. Gan, Z., D. Yu, Z. Zhong, Q. Liang, and X. Jing, Enzymatic degradation of poly(ε-caprolacton)/poly(dl-lactide) blends in phosphate buffer solution. Polymer. 40(10): p. 2859-2862.
65. Labow, R.S., E. Meek, L.A. Matheson, and J.P. Santerre, Human macrophage-mediated biodegradation of polyurethanes: assessment of candidate enzyme activities. Biomaterials, 2002. 23(19): p. 3969-3975.
66. Wang, G.B., R.S. Labow, and J.P. Santerre, Biodegradation of a poly(ester)urea-urethane by cholesterol esterase: isolation and identification of principal biodegradation products. J Biomed Mater Res, 1997. 36(3): p. 407-417.
67. Gan, Z., Q. Liang, J. Zhang, and X. Jing, Enzymatic degradation of poly(ε-caprolactone) film in phosphate buffer solution containing lipases. Polymer Degradation and Stability, 1997. 56(2): p. 209-213.
68. English, A.E., T. Tanaka, and E.R. Edelman, Polyelectrolyte hydrogel instabilities in ionic solutions. Journal of Chemical Physics, 1996. 105(23): p. 10606-10613.
69. Qu, X., A. Wirsén, and A.-C. Albertsson, Synthesis and characterization of pH-sensitive hydrogels based on chitosan and D,L-lactic acid. Journal of Applied Polymer Science, 1999. 74(13): p. 3193-3202.
70. Vert, M., S. Li, and H. Garreau, More about the degradation of LA/GA-derived matrices in aqueous media. Journal of Controlled Release, 1991. 16(1–2): p. 15-26.
71. Li, S., Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomed Mater Res, 1999. 48(3): p. 342-353.
72. Leong, K.W., B.C. Brott, and R. Langer, Bioerodible polyanhydrides as drug-carrier matrices. I: Characterization, degradation, and release characteristics. J Biomed Mater Res, 1985. 19(8): p. 941-955.
73. Ron, E., T. Turek, E. Mathiowitz, M. Chasin, M. Hageman, and R. Langer, Controlled release of polypeptides from polyanhydrides. Proc Natl Acad Sci U S A, 1993. 90(9): p. 4176-4180.
74. Li, S., M. Tenon, H. Garreau, C. Braud, and M. Vert, Enzymatic degradation of stereocopolymers derived from l-, dl- and meso-lactides. Polymer Degradation and Stability, 2000. 67(1): p. 85-90.
75. Rice, M.A. and K.S. Anseth, Encapsulating chondrocytes in copolymer gels: bimodal degradation kinetics influence cell phenotype and extracellular matrix development. J Biomed Mater Res A, 2004. 70(4): p. 560-568.
76. Ishii, I., A. Tomizawa, H. Kawachi, T. Suzuki, A. Kotani, I. Koshushi, H. Itoh, N. Morisaki, H. Bujo, Y. Saito, S. Ohmori, and M. Kitada, Histological and functional analysis of vascular smooth muscle cells in a novel culture system with honeycomb-like structure. Atherosclerosis, 2001. 158(2): p. 377-384.
77. Ashton, R.S., A. Banerjee, S. Punyani, D.V. Schaffer, and R.S. Kane, Scaffolds based on degradable alginate hydrogels and poly(lactide-co-glycolide) microspheres for stem cell culture. Biomaterials, 2007. 28(36): p. 5518-5525.
78. Little, L., K.E. Healy, and D. Schaffer, Engineering biomaterials for synthetic neural stem cell microenvironments. Chem Rev, 2008. 108(5): p. 1787-1796.
79. Lei, Y., S. Gojgini, J. Lam, and T. Segura, The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels. Biomaterials, 2011. 32(1): p. 39-47.
80. Sung, H.J., C. Meredith, C. Johnson, and Z.S. Galis, The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials, 2004. 25(26): p. 5735-5742.
81. Perugini, P., I. Genta, B. Conti, T. Modena, D. Cocchi, D. Zaffe, and F. Pavanetto, PLGA microspheres for oral osteopenia treatment: preliminary "in vitro"/"in vivo" evaluation. Int J Pharm, 2003. 256(1-2): p. 153-160.
82. Çatıker, E., M. Gümüşderelioğlu, and A. Güner, Degradation of PLA, PLGA homo- and copolymers in the presence of serum albumin: a spectroscopic investigation. Polymer International, 2000. 49(7): p. 728-734.
83. Anseth, K.S., A.T. Metters, S.J. Bryant, P.J. Martens, J.H. Elisseeff, and C.N. Bowman, In situ forming degradable networks and their application in tissue engineering and drug delivery. Journal of Controlled Release, 2002. 78(1–3): p. 199-209.
84. Darling, E.M. and K.A. Athanasiou, Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J Orthop Res, 2005. 23(2): p. 425-432.
85. Bonaventure, J., N. Kadhom, L. Cohen-Solal, K.H. Ng, J. Bourguignon, C. Lasselin, and P. Freisinger, Reexpression of Cartilage-Specific Genes by Dedifferentiated Human Articular Chondrocytes Cultured in Alginate Beads. Experimental Cell Research, 1994. 212(1): p. 97-104.
86. Park, H., J.S. Temenoff, Y. Tabata, A.I. Caplan, and A.G. Mikos, Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials, 2007. 28(21): p. 3217-3227.
87. Park, H., X. Guo, J.S. Temenoff, Y. Tabata, A.I. Caplan, F.K. Kasper, and A.G. Mikos, Effect of swelling ratio of injectable hydrogel composites on chondrogenic differentiation of encapsulated rabbit marrow mesenchymal stem cells in vitro. Biomacromolecules, 2009. 10(3): p. 541-546.
88. Johnstone, B., T.M. Hering, A.I. Caplan, V.M. Goldberg, and J.U. Yoo, In VitroChondrogenesis of Bone Marrow-Derived Mesenchymal Progenitor Cells. Experimental Cell Research, 1998. 238(1): p. 265-272.
89. Wong, M. and R.S. Tuan, Nuserum, a synthetic serum replacement, supports chondrogenesis of embryonic chick limb bud mesenchymal cells in micromass culture. In Vitro Cell Dev Biol Anim, 1993. 29A(12): p. 917-922.
90. Ustunel, I., A.M. Ozenci, Z. Sahin, O. Ozbey, N. Acar, G. Tanriover, C. Celik-Ozenci, and R. Demir, The immunohistochemical localization of notch receptors and ligands in human articular cartilage, chondroprogenitor culture and ultrastructural characteristics of these progenitor cells. Acta Histochemica, 2008. 110(5): p. 397-407.
91. Li, Q., J. Wang, S. Shahani, D.D.N. Sun, B. Sharma, J.H. Elisseeff, and K.W. Leong, Biodegradable and photocrosslinkable polyphosphoester hydrogel. Biomaterials, 2006. 27(7): p. 1027-1034.
92. Yu, S.M., H.A. Kim, and S.J. Kim, 2-Deoxy-D-glucose regulates dedifferentiation through beta-catenin pathway in rabbit articular chondrocytes. Exp Mol Med, 2010. 42(7): p. 503-513.
93. Yu, S.-M., H.-J. Jeong, J.-C. Jung, and S.-J. Kim, Sulforaphane (SFN) regulates dedifferentiation and cyclooxygenase-2 (COX-2) expression via MAPkinase pathway in rabbit articular chondrocytes. Biomedicine & Preventive Nutrition, 2013. 3(1): p. 91-97.
94. Tang, Y. and J. Singh, Biodegradable and biocompatible thermosensitive polymer based injectable implant for controlled release of protein. International Journal of Pharmaceutics, 2009. 365(1–2): p. 34-43.