研究生: |
廖紹斐 Liao, Shao-Fei |
---|---|
論文名稱: |
高頻諧振無線充電器研製 Design and Implementation of High Frequency Resonant Wireless Charger |
指導教授: |
吳財福
Wu, Tsai-Fu |
口試委員: |
陳科宏
Chen, Ke-Horng 謝耀慶 Hsieh, Yao-Ching 羅有綱 Lo, Yu-Kang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 無線充電 、全橋相移 、諧振 、軟切換 、數位控制 |
外文關鍵詞: | Wireless Charging, Full-Bridge Phase Shift, Resonant, Soft Switching, Digital Control |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究研製一高頻諧振無線充電器,充電器之輸出平均電流為8.5 A,對一7.5 Ah之鋰離子電池充電,為一1.13 C充電之電路。本研究所使用之電路架構為全橋LLC串聯諧振轉換器,操作頻率為350 kHz,並利用全橋相移控制以穩定輸出電流。功率開關元件之操作頻率略高於諧振頻率點,利用諧振之特性使開關達到軟切換,降低切換損失並提高轉換效率。控制上採用數位控制,提高電路之自由度及可靠度,並藉由微控制器之硬體及軟體來保護電路,系統發生異常時可以即時關閉電路運作,達到保護電路之效果。
回授電路則利用峰值回授的方式,於非接觸式變壓器之一次側進行電壓、電流回授。電流回授值與欲控制之輸出電流做比較,將充電電流控制在8.5 A;電壓回授則希望可藉由峰值回授偵測電池電壓,但因與實際負載有所差異,造成峰值回授電壓無法完全反映電池當前電壓,因此將回授電壓整流取平均值後,此平均電壓可透過變壓器匝數比反映出電池當前電壓,故本研究提出未來可利用平均值回授之方式偵測電池電壓,避免電池過充之狀況發生。
本研究主要貢獻為:(1)實現一直流輸入155 V,輸出電流8.5 A,切換頻率350 kHz之無線充電電路,(2)利用諧振電路之特性達到零電壓切換,提高轉換效率,(3)僅從一次側電路做回授,減輕二次側電路之體積及重量,(4)採用數位控制提高系統可靠度。
This thesis studies and develops a high frequency resonant wireless charger. The average output current of the charger is 8.5 A. For a 7.5 Ah lithium ion battery, it is a 1.13 C charging circuit. The proposed system configuration is a full-bridge LLC series resonant converter with an operating frequency 350 kHz. A phase-shift control is to stabilize the output current. The switching frequency is a little bit higher than the resonant frequency, to achieve soft switching and reduce switching loss, increasing the efficiency. In the aspect of control, we use digital control to increase degree of freedom in circuit operation and reliability, and use a microcontroller RX62T for software protection and hardware protection. When abnormal during operation, the system controller can shut down system operation and protect the circuits.
A peak-value feedback circuit to feedback the voltage and current on the primary side of the non-contact transformer is proposed to control and stabilize the charging current to 8.5 A. As for voltage feedback, a peak-value feedback circuit is needed to detect battery voltage, but due to the difference between feedback value and the actual one, peak-value feedback can not completely reflect battery voltage. After rectifying the feedback voltage and taking average, the average voltage can reflect battery voltage. In this case, this research proposes an approach to detect battery voltage by using average voltage feedback.
The main contributions of the proposed research are: (1) implementing a charging circuit with 155 V DC input, 8.5 A current output and 350 kHz switching frequency; (2) using resonant circuit characteristics to achieve ZVS and increasing efficiency; (3) only feedback from the primary side of the transformer, reducing the volume and weight of the secondary-side circuit and (4) using digital control to increase system reliability.
[1] C. Qiu, K. T. Chau, T. W. Ching, and C. Liu, “Overview of wireless charging technologies for electric vehicles,” Journal of Asian Electric Vehicles, vol. 12, no. 1, pp. 1679-1685, Jun, 2014.
[2] Wireless Power Consortium, System description wireless power transfer Vol.1, v1.1.1, Part I, II and III.
[3] A. Kurs, A. Karalis, R. Moffat, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wirless power transfer via strongly coupled magnetic resonances,” Science, vol. 317, no. 5834, pp. 83-86, July 2007.
[4] V. Boscaino, F. Pellitteri, G. Capponi, and R. La Rosa, “A Wireless Battery Charger Architecture for Consumer Electronics”, IEEE Second International Conference on Consumer Electronics, September 2012, Page(s): 84-88.
[5] C. J. Chen, T. H. Chu C. L. Lin and Z. C. Jou, ”A study of loosely coupled coils for wireless power transfer,” IEEE Trans. Circuits Syst., vol. 57, no. 71, pp. 536-540, Jul. 2010.
[6] Y. Jia and D. Xie, “Classification and characteristics of electric vehicle battery equivalent circuit model,” Power and Energy, pp. 516-521, 2011.
[7] J. Gomez, R. Nelson and E. E. Kalu, “Equivalent circuit model parameters of a high-power Li-ion battery: thermal and state of charge effects,” Journal of Power Sources, pp. 4826-4831, 2011 .
[8] M. Fang, “Study on lithium ion battery management system and SOC estimation,” Anhui University, 2012.
[9] Q. Kong and D. Wang, “Review on SOC estimation of power battery for electric vehicles,” Electrical Age, pp. 30-32, 2012.
[10] J. Lee, O. Nam and B. H. Cho, “Li-ion battery SOC estimation method based on the reduced order extended Kalman filtering,” Journal of Power Sources, pp. 9-15, 2007.
[11] 鋰離子電池及電池電量計解說,立錡科技,2019。
[12] 陳宜宏,實現數位控制之LLC諧振轉換器,國立台北科技大學-電機工程系-碩士論文,民國99年7月。
[13] 周雯琪,"感應耦合電能傳輸系統的特性與設計研究",浙江大學電氣工程學院碩士論文,2008年6月。
[14] J.A. Sabate, V. Vlatkovic, R.B. Ridley, F.C. Lee and B.H. Cho, “Design considerations for high-voltage high-power full-bridge zero voltage switched PWM converter”, APEC 90’, pp. 275-284.
[15] M. Uslu, “Analysis, design, and implementation of a 5 kw zero voltage switching phase-shifted fullbridge dc/dc converter based power supply for arc welding machines,” Master’s thesis, Middle East Technical University, 2006.
[16] J.R. Pinheiro and J.E. Baggio, “Isolated interleaved-phase-shift PWM DCDC ZVS converters”, Industry Applications Conference, Conference Record of the 2000 IEEE, vol. 4, pp. 2383-2388, 2000.
[17] T. Sun, J. Guo, R. Li, L. Fu and L. Liang, “A ZVS DCDC converter using non-dissipative snubber circuit”, Vehicle Power and Propulsion Conference, VPPC '08. IEEE, pp. 1-4, 2008.
[18] 郭昭佑,二次側電力控制之LCC-C諧振補償無線充電器,國立高雄科技大學-電機工程系-第十五屆電力電子研討會,民國107年9月。
[19] 黃世杰,輔以電容補償方式協助非接觸式供電於鋰電池充電之研製應用,國立成功大學-電機工程學系第三十一屆電力工程研討會,2010年12月。
[20] Mean Well, “DCW03 Series Datasheet,” 2018.
[21] Mean Well, “SCW05 Series Datasheet,” 2018.
[22] CREE, “C3M0075120K Datasheet,” 2018.
[23] Infineon, “1EDI60N12AF Datasheet,” 2015.
[24] Renesas, “RX62T Group Datasheet,” Rev. 1.10, Apr. 2011.
[25] Magnetics Company, “Ferrite cores”, 2017.
[26] LEM, “LAX 100-NP Datasheet,” 2015.
[27] VISHAY, “VS-MUR1520-M3 Datasheet,” 2017.
[28] SAMSUNG SDI. “INR18650-25R Datasheet,” 2013.
[29] 相移式全橋轉換器,德州儀器,2017。
[30] TDK, “Material Characteristics,” 2018.
[31] CREE, “C3M0075120K Datasheet,” 2018.