研究生: |
陳傑文 Chen, Chieh-Wen |
---|---|
論文名稱: |
吲哚類抗癌化合物之合成和結構與活性關係(SAR)的研究 Synthesis and Structure-Activity Relationship of Indole Compounds as Anticancer Agents |
指導教授: |
廖俊臣
Liao, Chun-Chen 謝興邦 Hsieh, Hsing-Pang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 178 |
中文關鍵詞: | 吲哚 、抗癌藥物 |
外文關鍵詞: | indole, anticancer drugs |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的主旨在於研究一系列以吲哚 (indole) 為主架構的抗癌藥物之設計與合成,並進一步的探討這系列化合物的結構與抗癌生物活性之相關 (structure -activity relationship,簡稱為 SAR)。
在抗癌機制上的主要研究方向為研發抗有絲分裂試劑,以阻礙癌細胞之細胞週期,進而達到抗癌之效果。而在研究過程中,可分成兩階段 : 第一階段是以微管作為抗癌標靶之藥物設計;第二階段則是以極光激酶 A (Aurora kinase A) 作為抗癌標靶之藥物設計。
在這系列的吲哚化合物中,以帶有 3-甲基吡唑 (3-methylpyrazole) 的化合物擁有對於極光激酶 A 的抑制活性,抑制效果最高可達 77%,而化合物 9c 更對於人類結腸癌細胞株 HCT116 (human colon cancer - 116 cell line) 顯現出明顯的抗癌生物活性 (IC50 = 2.6 μM) ,並以此化合物作為先導化合物 (lead compound) 做結構與抗癌生物活性之相關之探討。
This dissertation is focused on the design and synthesis of the indole system compounds as anticancer drugs, and a study on their structure-activity relationship (SAR) outlined as follows.
For the anticancer drug design we intend to make antimitotic agents to disrupt the cancer cell’s cell cycle. In our study, there are two stages. At the initial stage, we use microtubules as the anticancer target to design the drug. Then, we change the target to the Aurora kinase A.
In this series indole compound that we prepared, we found that the compound which has the 3-methyl pyrazole as the heterocyclic part can be the Aurora kinase A inhibitor, and the highest case can inhibit around 77% Aurora kinase A. The compound 9c has the anticancer bioactivity of 2.6 μM (IC50) against the HCT116 (human colon cancer - 116 cell line). Furthermore we use this compound as the lead compound to make the SAR (structure -activity relationship) for further study and optimization.
1. Matsudaira, P. T.; Lodish, H. F.; Arnold, B.; Kaiser, C.; Monty, K.; Matthew, P. S.; Anthony, B.; Hidde, P. Molecular Cell Biology; W. H. Freeman; 5th edition; 2004.
2. Hanahan, D.; Weinberg, R. A. The hallmarks of Cancer. Cell, 2000, 100, 57-70.
3. http://www.who.int/cancer/en/
4. Williams, D. A.; Lemke, T. L. Foye’s Principles of Medicinal Chemistry; Lippincott Williams & Wilkins; 5th edition; 2002; p 924-929.
5. Lipp, H. P. Anticancer Drug Toxicity: Prevention, Management, and Clinical Pharmacokinetics; Marcel Dekker Inc.; New York; 1999; p 11-201
6. Nelson, D. L.; Michael M. C. Lehninger Principles of Biochemistry; W. H. Freeman; 3rd BK&CD edition; 2003; p 921.
7. http://www.medicinenet.com/chemotherapy/article.htm
8. 董彥士,化學博士論文,國立清華大學,2007 年。
9. Patrick, G. L. An Introduction to Medicinal Chemistry; Oxford; 3rd edition; New York; 2005; p 500-527.
10. Tien, H. F. Molecular Therapy in Hematologic Malignancies. Formosan. J. Med. 2003, 7, 212-221.
11. Hsieh, R.K. Molecular Targeted Therapy for Solid Tumors. Formosan. J. Med. 2003, 7, 222-226.
12. Melisi, D.; Troiani, T.; Damiano, V.; Tortora, G.; Ciardiello, F. Therapeutic Integration of Signal Transduction Targeting Agents and Conventional Anti-cancer Treatments. Endocrine-Related Cancer, 2004, 11, 51-68.
13. Pollard, J. R.; Mortimore, M. Discovery and Development of Aurora Kinase Inhibitors as Anticancer Agents, J. Med. Chem. 2009, 52, 2629-2651.
14. Lo, Y. H.; Lin, C. F.; Yang, S. C.; Wu, M. J. New Targets in Cell Cycle for New Antitumor Agents Development, J. Chin. Chem. Soc. 2008, 66, 293-308.
15. http:// www.nobelprize.org/nobel_prizes/
16. Jordan, A.; Hadfield, J. A.; Lawrence, N. J.; McHown, A. T. Tublin as A Target for Anticancer Drugs: Agents which Interact with The Mitotic Spindle. Med. Res. Rev. 1998, 18, 259-296.
17. http://life.nthu.edu.tw/~b831608/ps/cells3.html
18. (a) Marcos, M. Therapeutic opportunities to control tumor cell cycles. Clin. Transl. Oncol. 2006, 8, 399-408. (b) Guillermo, D. C.; Ignacio, P. D. C.; Maros, M. Targeting Cell Cycle Kinases for Cancer Therapy. Curr. Med. Chem. 2007, 14, 969-985.
19. Jordan, M. A.; Wilson, L. Microtubules as Target for Anticancer Drugs. Nat. Rev. Cancer 2004, 4, 253-265.
20. Heald, R.; Nogales, E. Microtubule dynamics. J. Cell Sci. 2002, 115, 3-4.
21. Mahindroo, N.; Liou, J. P.; Chang, J. Y. ; Hsieh, H. P. Antitublin agents for the treatment of cancer - a medicinal chemistry update. Expert Opin. Ther. Patents 2006, 16, 647-691.
22. Domont, R.; Broeei, A.; Chignell, C. F.; Quinn, F. R.; Suffness, M. A. Novel synthesis of colchicine and analogues from thiocolchicine and congeners: reevaluation of colchicine as a potential antitumor agent. J. Med. Chem. 1987, 30, 732-735.
23. Mujagic, H.; Conger, B. M.; Smith, C. A.; Occhipinti, S. J.; Schuette, W. H.; Shackney, S. E. Schedule dependence of vincristine lethality in sarcoma 180 cells following partial synchronization with hydroxyurea. Cancer Res. 1983, 43, 3598-3603.
24. (a) Manfriedi, J. J.; Horwitz, S. B. Taxol: an antimitotic agent with a new mechanism of action. Pharmacol. Ther. 1984, 25, 83. (b) Thoret, S.; Gueritte, F.; Guenard, D.; Dubois, J. Semisynthesis and biologoical evaluation of a novel D-seco docetaxel analogue. Org. Lett. 2006, 8, 2301-2304.
25. Rowinsky, E. K. The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu. Rev. Med. 1997, 48, 353-374.
26. Mekhail, T. M.; Markman, M. Paclitaxel in cancer therapy. Expert Opin. Pharmacother. 2002, 3, 755-766.
27. (a) Kirschner, L. S.; Greenberger, L. M.; Hsu, S. I. H.; Yang, C. P. H.; Cohen, D.; Piekarz, R. L.; Castillo, G.; Han, E. K. H.; Yu, L.; Horwitz, S. B. Biochemical and genetic characterization of the multidrug resistance phenotype in murine macrophage-like J774.2 cells. Biochem. Pharm. 1992, 43, 77. (B) Gottesman, M. M.; Pastan, I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Ann. Rev. Biochem. 1993, 62, 385.
28. Keen, N.; Taylor, S. Aurora-Kinase inhibitors as anticancer agents. Nat. Rev. Cancer 2004, 4, 927-936.
29. (a) Hsu, J. Y.; Sun, Z.W.; Li, X.; Reuben, M.; Tatchell, K.; Bishop, D. K.; Grushcow, J. M.; Brame, C. J.; Caldwell, J. A.; Hunt, D. F.; Lin, R.; Smith, M. M.; Allis, C. D. Mitotic phosphorylation of histone H3 is governed by Ip11/ Aurora kinase and Glc 7/PP1 phosphatase in budding yeasts and nematodes. Cell 2000, 102, 279-291. (b) Giet, R.; Glover, D. M. Drosophila Aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J. Cell. Biol. 2001, 152, 669-682.
30. (a) Keen, N.; Taylor, S. Aurora-kinase inhitbitors as anticancer agents. Nature Rev. Cancer 2004, 4, 927-936. (b) Carvajal, R. D.; Rse, A.; Schwartz, G. K. Aurora kinases: new targets for cancer therapy. Clin. Cancer Res. 2006, 12 , 6869-6875.
31. McInnes, C.; Mezna, M.; Fischer, P. M. Progress in the discovert of polo-like kinase inhibitors. Curr. Top. Med. Chem. 2005, 5, 181-197.
32. Qian, Y. W.; Erikson, E.; Li, C.; Maller, J. L. Activated polo-like kinase Plx1 is required at multiple points during mitosis in Xenopus laevis. Mol. Cell. Biol. 1998, 18, 4262-4271.
33. Castro, A.; Bernis, C.; Vigneron, S.; Labbé, J. C.; Lorca, T. The anaphase-promoting complex: a key factor in the regulation of cell cycle. Oncogene 2005, 24, 314-325.
34. Strebhardt, K.; Ullrich, A. Targeting polo-like kinase 1 for cancer therapy. Nat. Rev. Cancer 2006, 6, 321-330.
35. Li, W. T.; Hwang, D. R.; Chen, C. P.; Shen, C. W.; Huang, C. L.; Chen, T. W.; Lin, C. H;.; Chang, Y. L.; Chang, Y. Y.; Lo, Y. K.; Tseng, H.Y.; Lin, C.C.; Song, J. S.; Chen, H. C.; Chen, S.J.; Wu, S. H.; Chen, C. T. Synthesis and biological evaluation of N-heterocyclic indolyl glyoxylamides as orally active anticancer agents, J. Med. Chem. 2003, 46, 1706-1715.
36. Liou, J. P.; Chang, Y. L.; Kuo, F. M.; Chang, C. W.; Tseng, H. Y.; Wang, C. C.; Yang, Y. N.; Chang, J. Y.; Lee, S. J.; Hsieh, H. P. Concise synthesis and structure-activity relationships of Combretastatin A-4 analogues, 1-Aroylindoles and 3-Aroylindoles, as novel classes of potent antitubulin agents, J. Med. Chem 2004, 47, 4347-4257.
37. Jordan, A.; Hadfiedld, J. A.; Lawrence, N. J.; McGown, A. T. Tublin as a target for anticancer drugs: agents which interact with the mitotic spindle, Med. Res. Rev. 1998, 18, 259-296.
38. (a) Bacher, G.; Nickel, B.; Emig, P.; Vanhoefer, U.; Seeber, S.; Shandra, A.; Klenner, T. B.; Beckers, T. D-24851, a novel synthetic microtubule inhibitor, exerts curative antitumoral activity in vivo, shows efficacy toward multidrug-resistant tumor cells, and lacks neurotoxicity, Cancer Res. 2001, 61, 392-399. (b) Bacher, G.; Beckers, T.; Emig, P.; Klenner, T. B.; Kutscher, B.; Nickel, B. New small-molecule tubulin inhibitors, Pure Appl. Chem. 2001, 73, 1459-1464.
39. (a) Pettit, G. R.; Singh, S. B.; Niven, M. L.; Hamel, E.; Schmidt, J. M. Isolation, structure, and synthesis of Combretastatins A-1 and B-1, potent new inhibitors of microtubule assembly, derived from combretum caffrum., J. Nat. Prod. 1987, 50, 119-131. (b) Pettit, G. R.; Singh, S. B.; Boyd, M.R.; Hamel, E.; Pettit, R. K.; Schmidt, J. M.; Hogan, F. Isolation and synthesis of Combretastatins A-4, A-5, and A-6., J. Med. Chem. 1995, 38, 1666-1672
40. Coumar, M. S.; Leou, J. S.; Shukla, P.; Wu, J. S.; Dixit, A. K.; Lin, W. H.; Chang, C. Y.; Lien, T. W.; Tan, U. K.; Chem, C. W.; Hsu, J. T. A.; Chao, Y. S.; Wu, S. Y.; Hsieh, H. P. Structure-Based Drug Design of Novel Aurora Kinase A Inhibitors: Structure Basis for Potency and Specificity. J. Med. Chem. 2009, 52, 1050-1062.
41. Sarli, V.; Giannis, A. Inhibitors of mitotic kinesins: next-generation antimitotics. Chem. Med. Chem. 2006, 1, 293-298.
42. Leizerman, I.; Avunie-Masala, R.; Elkabets, M.; Fich, A.; Gheber, L. D.; Mayer, T. U.; Kapoor, T. M.; Haggarty, S. J.; King, R. W.; Schreiber, S. L.; Mitchison, T. J. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 1999, 286, 971-974.
43. Harrington, E. A.; Bebbington, D.; Moore, J.; Rasmussen, R. K.; Ajose-Adeogun, A. O.; Nakayama, T.; Graham, J. A.; Demur, C.; Hercend, T.; Diu-Hercend, A.; Su, M.; Golec, J. M.; Miller, K. M. VX-680, a potent and selective small- molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat. Med. 2004, 10, 262-267.
44. Suzanne, C. M.; Jane deSolms, S.; Shaw, A. W.; Abrams, M. T.; Ciccarone, T. M.; Davide, J. P.; Hamilton, K. A.; Hutchinson, J. H.; Koblan, K. S.; Kohl, N. E.; Lobell, R. B.; Robinson, R. G.; Graham, S. L. Diaryl Ether Inhibitors of Farnesyl- Protein Transgerase. Bioorg. Med. Chem. Lett. 2001, 11, 1257.
45. Kuo, C. C.; Hsieh, H. P.; Pan, W. Y.; Chen, C. P.; Liou, J. P.; Lee, S. J.; Chang, Y. L.; Chen, L. T.; Chen, C. T.; Chang, J. Y. BPR0L075, A novel synthetic indole compound with antimitotic activity in human cancer cells, exerts effective antitumoral activity in vivo. Cancer Res. 2004, 64, 4621-4628.
46. Coumar, M. S.; Wu, J. S.; Leou, J. S.; Tan, U. K.; Chang, C. Y.; Chang, T. Y.; Lin, W. H.; Hsu, J. T. A.; Chao, Y. S.; Wu, S. Y.; Hsieh, H. P. Aurora kinase A inhibitors: Identification, SAR exploration and molecular modeling of 6,7-dihydro-4H-pyrazolo[1,5-a]pyrrolo[3,4-d]pyrimidine-5,8-dione scaffold Bioorg. Med. Chem. Lett. 2008, 18, 1623-1627.