研究生: |
迪內希 Dinesh, Bhalothia. |
---|---|
論文名稱: |
開發異質層狀結構與原子—團簇修飾奈米觸媒應用於鹼性燃料電池氧氣還原反應 Development of Heterogeneous Nanocatalysts with Hierarchical Structure and Atomic - Clusters Decoration for Oxygen Reduction Reaction Application in Alkaline Fuel Cell |
指導教授: |
楊雅棠
Yang, Ya-Tang 陳燦耀 Chen, Tsan-Yao |
口試委員: |
王丞浩
Wang, Chen-Hao 王冠文 Wang, Kuan-Wen 李志浩 Lee, Chih-Hao |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 178 |
中文關鍵詞: | 奈米觸媒 、燃料電池 |
外文關鍵詞: | Nanocatalysts, Atomic |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
確認近乎枯竭和造成不利的天候影響的化石燃料,已成為吸引研究人員尋找潛在綠色替代品的共同利益(common interest)最大關注點。在此背景下,燃料電池提供一個橋樑,使化學能有效地轉成電能而不增加碳足跡,並被視為在現今已存的替代能源轉換方法中最有潛力的候選者之一。儘管具有很大的優點,燃料電池的商用可行性仍然受到在陰極緩慢的氧氣還原反應動力學所阻礙。氧氣還原反應在氧化還原循環中占有最大的過電位損失(約0.3到0.4伏特),並被認為是實現燃料電池技術的關鍵性能決定因素。白金到目前為止做為萬用觸媒來改善氧氣還原反應動力學,但其本質特性像是原始成本高和地殼含量低,使得它不適合廣泛的應用。前述的問題已經由多樣的取代型觸媒設計方案,針對消除或最小化貴金屬的使用量同時維持相當的活性來解決。然而,有前景和有效率的技術距離達到商用標準仍有好長一段路要走。
根據最近的進展,本研究採用versatile self-aligned濕式化學還原法來開展全新的原子-團簇修飾異質層狀結構奈米觸媒的結構設計展望,並兼顧氧氣還原反應的效能與成本考量上的平衡。在第一個部分,本團隊發展出一種簡單的設計評定,並合成出三元金屬奈米觸媒,由銅核與白金團簇修飾的鈀殼(簡稱CuPP)承載在奈米碳管上所組成。此種奈米觸媒的氧氣還原反應效能已經透過控制白金負載量及氫氣退火還原來篩選。在最佳化的條件,這種擁有獨特結構的奈米觸媒,其氧化還原活性和穩定性相較於商用白金(Johnson Matthey-Pt/C)觸媒有4-5個數量級的改善。
第二部分描述在系統化的研究下,去理解各種參數(反應時間,金屬負載量和溫度)在次奈米級白金團簇修飾的鎳核-鈀殼(簡稱NPP)奈米觸媒的合成過程中,對原子結構和相對應的電化學效能所扮演的決定性角色。特別相關的是,含9 wt.% 白金的NPP奈米觸媒,其質量活性(1523.7 mA mg-1)在0.85 V ( vs. RHE) 相較商用白金 (67.1 mA mg-1) 改善約22.74倍。
第三部分為以鈷為基底的三元異質奈米觸媒。在這部分,準備了承載在活性碳上的原子級白金團簇修飾鈷核-鈀殼(簡稱CPP)三元金屬奈米觸媒,來分析白金團簇尺寸的影響。含1.0 wt. % 白金的CPP奈米觸媒,在0.85V (vs. RHE) 具有高達22885.6 mA mg-1的質量活性,比商用白金觸媒還高341.06倍。
最後,分析使用不同金屬含量的原子級銥團簇修飾在鈷核-鈀殼(簡稱CPI),並承載在奈米碳管上。相較於商用白金觸媒,含有少於1.0 wt. % 銥的CPI奈米觸媒 (6405.1 mA mg-1),表現出約94.5倍的質量活性改善。此外,在69000圈的加速衰退測試之後,其質量活性保持在原有的164.28 % (10522.8 mA mg-1)。簡而言之,本研究所獲得的成果,使用簡便的設計和操作,為多功能的奈米觸媒開創全新的道路,在燃料電池陰極應用上,同時具有高活性及低成本兩個優勢。我們相信這種方法將通過生態和經濟友好的方式使燃料電池技術受益。
The confirmed near depletion and adverse climatic impacts of fossil fuels have become the biggest preoccupation attracting the common interest of researchers to find potential green alternatives. In this context, fuel cells provide a bridge for efficient interconversion of chemical to electrical energy without increasing the carbon footprints and considered as most promising candidates among existing alternative energy conversion means. Despite their great merits, the commercial viability of fuel cells is hampered by sluggish kinetics of oxygen reduction reaction (ORR) at the cathode. The ORR takes the largest over-potential loss (~0.3 to 0.4 volt) during redox cycle and perceived as a pivotal performance determining factor for realizing the fuel cell technology. Platinum (Pt) is by far used as an omnipotent catalyst for improving ORR kinetics, however, inherent characteristics such as high primitive cost and lower abundance in crust make it unfit for the large-scale application. Aforementioned issues have been addressed via a broad range of alternative catalyst design strategies aimed at eliminating or minimizing the noble-metal loading while maintaining comparable activity. Promising and efficient techniques, however, are still far away to attain commercial standards.
In line with recent advancements, this study implements a versatile self-aligned wet chemical reduction method to develop brand-new prospectus on the structural design of atomic-clusters decorated hierarchical structured heterogeneous NCs with the reconcilable balance between performance and cost considerations in ORR. In the first part, we developed an easy assessment on the design and synthesis of carbon nanotube (CNT) supported ternary metallic NCs consisting of Cu-core and Pt-clusters decorated Pd-shell (namely CuPP). ORR performance of such NCs has been screened via controlling the amount of Pt-loading and hydrogen (H2) reduction
annealing. In optimum case, with such a unique structure, redox activity and stability of these NCs are improved by 4-5 orders as compared to commercial Johnson Matthey-Pt/C catalyst.
The second part portraits the systematic studies undertaken to understand the decisive role played by various parameters (reaction time, metal loading and temperature) during synthesis on atomic structure and corresponding electrochemical performances of CNT supported sub-nanometer Pt-clusters decorated Nicore-Pdshell NCs (namely NPP). Of special relevance is that the mass activity (MA) of NPP NC with 9 wt.% Pt is improved by ~22.74-fold (1523.7 mA mg-1) as compared to that of commercial Johnson Matthey-Pt/C catalyst (67.1 mA mg-1) at 0.85 volt (vs. RHE).
The third part deals with Co-based ternary heterogeneous NCs. Herein, Active carbon (AC) supported ternary metallic NCs comprising atomic scale Pt-clusters decorated Cocore-Pdshell (namely CPP) were prepared and the effects of Pt-cluster size were analyzed. For CPP NC with 1.0 wt.% Pt, a record high MA of 22885.6 mA mg-1 at 0.85 volt (vs. RHE) is attained which is 341.06-times higher as that of commercial Johnson Matthey-Pt/C catalyst. Finally, atomic scale Iridium (Ir)-clusters have been decorated on CNT supported Cocore-Pdshell NCs in different amounts (namely CPI). The CPI NC with less than 1.0 wt.% Ir shows 95.45-times enhanced MA (6405.1 mA mg-1) as compared to commercial Johnson Matthey-Pt/C catalyst. Moreover, it retained 164.28% (10522.8 mA mg-1) of its original MA after 69000 cycles of accelerated degradation test (ADT). In short, obtained results open new avenues for the facile design and manipulation of functional NCs with both high activity and low cost applied to fuel cell cathode. We believe that this approach will benefit fuel-cell technology via both ecological and economical friendly means.
References
1. H. I. Karunadasa, C. J. Chang, J. R. Long, Nature 2010, 464, 1329-1333.
2. J. M. Andújar, F. Segura, Renewable and Sustainable Energy Reviews 2009, 13, 2309- 2322.
3. J. M. Tour, C. Kittrell, V. L. Colvin, Nature Materials 2010, 9, 871-874.
4. J. Tollefson, Nature 2010, 464, 1262-1264.
5. S. Ahmad, R. M. Tahar, Renewable Energy 2014, 63, 458-466.
6. M. Zhou, C. Yang, K.-Y. Chan, Advanced Energy Materials 2014, 4, DOI: 10.1002/aenm.201400840.
7. L. Carrette, K. A. Friedrich, U. Stimming, Fuel Cells 2001, 1, 5-39.
8. Fowler, M.; Mann, R. F.; Amphlett, J. C.; Peppley, B. A.; Roberge, P. R.; Vielstich, W.; Gasteiger, H. A.; Lamm, A.; Vielstich, W.; Gasteiger, H. A.; Lamm, A. (Eds.), Fuel Cell Technology and Applications, 2003, p. 663.
9. http://www.fuelcelltoday.com/
10. Z.-L. Wang, D. Xu, J.-J. Xu, X.-B. Zhang, Chemical Society Reviews 2014, 43, 7746- 7786.
11. T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets, D. G. Nocera, Chemical Reviews 2010, 110, 6474-6502.
12. X.-Z. Yuan, H. Wang, in PEM Fuel Cell Electrocatalysts and Catalyst Layers (2nd ed.: J.
Zhang), Springer London, 2008, pp. 1-87.
13. F. Barbir, PEM Fuel Cells: Theory and Practice, 2nd edition, San Diego,CA, Elsevier, 2005.
14. A. B. Stambouli, E. Traversa, Renewable and Sustainable Energy Reviews 2002, 6, 433- 455.
15. http://americanhistory.si.edu/fuelcells/mc/mcfcmain.htm.
16. http:www.fuelcellmarkets.com/fuel_cell_markets/molten_carbonate_fuel_cells_mcfc/ 4,1,1, 2505.html.
17. http: //energy.gov/eere/fuelcells/types-fuel-cells.
18. http://www.ieeeghn.org/wiki/index.php/Bacon%27s_Fuel_Cell.
19. http://www.hydrogen.energy.gov/pdfs/review12/fc088_popov_2012_o.pdf.
20. K. Sasaki, H. Naohara, Y. Cai, Y. M. Chio, P. Liu, M. B. Vukmirovic, J. X. Wang and R. R. Adzic, Angew. Chem., Int. Ed., 2010, 49, 8602.
21. R. R. Adzic, J. Zhang, K. Sasaki, M. B. Vukmirovic, M. Shao, J. X. Wang, A. U. Nilekar, M. Mavrikakis, J. A. Valerio and F. Uribe, Top. Catal., 2007, 46, 249.
22. M. P. Hoh and T. R. Ralph, Platinum Met. Rev., 2002, 46, 117. 23. Wang, Y. J.; Zhao, N.; Fang, B.; Li, H.; Bi, X. T.; Wang, H. Carbon-Supported Pt-Based Alloy Electrocatalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells: Particle Size, Shape, and Composition Manipulation and Their Impact to Activity. Chem. Rev. 2015, 115, 3433−3467
24. Mench, M. M.; Kumbar, E. C.; Veziroglu, T. N. Polymer Electrolyte Fuel Cell Degradation; Academic Press Elsevier: Waltham, 2012
25. Zhang, S.; Yuan, X.; Hin, J. N. C.; Wang, H.; Friedrich, K. A.; Schulze, M. A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells J. Power Sources. 2009, 194, 588−600.
26. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jónsson, The Journal of Physical Chemistry B, 2004, 108, 17886-17892.
27. N. Markovic, H. Gasteiger and P. N. Ross, J Electrochem Soc, 1997, 144, 1591-1597. 28. Huang, X.; Zhao, Z.; Cao, L.; Chen, Y.; Zhu, E.; Lin, Z.; Li, M.; Yan, A.; Zettl, A.; Wang, Y. M.; Duan, X.; Mueller, T.; Huang, Y., High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348 (6240), 1230. 29. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; Marković, N. M., Improved Oxygen Reduction Activity on Pt3Ni(111)via Increased Surface Site Availability. Science 2007, 315 (5811), 493. 30. Dong, Y.; Zhou, Y.-W.; Wang, M.-Z.; Zheng, S.-L.; Jiang, K.; Cai, W.-B., Facile Aqueous Phase Synthesis of Carbon Supported B-doped Pt3Ni Nanocatalyst for Efficient Oxygen Reduction Reaction. Electrochim Acta 2017, 246, 242-250.
31. Jiang, J.; Gao, H.; Lu, S.; Zhang, X.; Wang, C.-Y.; Wang, W.-K.; Yu, H.-Q., Ni–Pd core–shell nanoparticles with Pt-like oxygen reduction electrocatalytic performance in both acidic and alkaline electrolytes. J Mater Chem A 2017, 5 (19), 9233-9240.
32. Luo, L.; Zhu, F.; Tian, R.; Li, L.; Shen, S.; Yan, X.; Zhang, J., Composition-Graded PdxNi1–x Nanospheres with Pt Monolayer Shells as High-Performance Electrocatalysts for Oxygen Reduction Reaction. ACS Catalysis 2017, 7 (8), 5420-5430.
33. Strasser, P.; Kühl, S., Dealloyed Pt-based core-shell oxygen reduction electrocatalysts. Nano Energy 2016, 29, 166-177. 34. Lim, B.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X.; Zhu, Y.; Xia, Y., Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction. Science 2009, 324 (5932), 1302.
35. Li, M.; Zhao, Z.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q.; Gu, L.; Merinov, B. V.; Lin, Z.; Zhu, E.; Yu, T.; Jia, Q.; Guo, J.; Zhang, L.; Goddard, W. A.; Huang, Y.; Duan, X. Ultrafine Jagged Platinum Nanowires Enable Ultrahigh Mass Activity for the Oxygen Reduction Reaction. Science 2016, 354, 1414−1419
36. Choi, E. Y.; Kim, C. K. Fabrication of nitrogendoped nano-onions and their electrocatalytic activity toward the oxygen reduction reaction. Scientific Reports.2017, 7, 4178.
37. Nesselberger, M.; Ashton, S.; Meier, J.C.; Katsounaros, I.; Mayrhofer, K.J.J.; Arenz, M. The Particle Size Effect on the Oxygen Reduction Reaction Activity of Pt Catalysts: Influence of Electrolyte and Relation to Single Crystal Models. Journal of the American Chemical Society 2011, 133, 17428-17433, doi:10.1021/ja207016u.
38. Shao, M.; Chang, Q.; Dodelet, J.-P.; Chenitz, R. Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chem Rev 2016, 116, 3594-3657, doi: 10.1021/acs.chemrev.5b00462. 39. Wang, Y.-J.; Zhao, N.; Fang, B.; Li, H.; Bi, X. T.; Wang, H. Carbon-Supported Pt-Based Alloy Electrocatalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells: Particle Size, Shape, and Composition Manipulation and Their Impact to Activity. Chem. Rev. 2015, 115, 3433–3467, DOI: 10.1021/cr500519c 40. Park, S. A.; Lee, E. K.; Song, H.; Kim, Y. T. Bifunctional enhancement of oxygen reduction reaction activity on Ag catalysts due to water activation on LaMnO3 supports in alkaline media S. A. Park et al, Scientific reports, 2015, 5, 13552 41. Bligaard, T.; Nørskov, J.K. Ligand effects in heterogeneous catalysis and electrochemistry. Electrochim Acta 2007, 52, 5512-5516, doi:https://doi.org/10.1016/j.electacta.2007.02.041.
42. Gauthier, Y.; Baudoing, R.; Joly, Y.; Rundgren, J.; Bertolini, J.C.; Massardier, J. PtxNi1−x(111) alloy surfaces: structure and composition in relation to some catalytic properties. Surface Science 1985, 162, 342-347, doi:https://doi.org/10.1016/0039-6028(85)90918-5. 43. Jeff Greeley; Jens K. Nørskov; Mavrikakis, M. Electronic structure and catalysis on metal surfaces. 2002, 53, 319-348, doi: 10.1146/annurev.physchem.53.100301.131630.
44. Stamenkovic, V.; Mun, B.S.; Mayrhofer, K.J.J.; Ross, P.N.; Markovic, N.M.; Rossmeisl, J.; Greeley, J.; Nørskov, J.K. Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the Surface Electronic Structure. 2006, 45, 2897-2901, doi:10.1002/anie.200504386. 45. Paffett, M.T.; Daube, K.A.; Gottesfeld, S.; Campbell, C.T. Electrochemical and surface science investigations of PtCr alloy electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1987, 220, 269-285, doi:https://doi.org/10.1016/0022-0728(87)85114-8. 46. Hammer, B.; Nørskov, J.K. Electronic factors determining the reactivity of metal surfaces. Surface Science 1995, 343, 211-220, doi:https://doi.org/10.1016/0039-6028(96)80007-0.
47. F. Barbir, PEM Fuel Cells: Theory and Practice, 2nd edition, San Diego,CA, Elsevier, 2005.
48. H. A. Gasteiger, S. S. Kocha, B. Sompalli, F. T. Wagner, Applied Catalysis B: Environmental 2005, 56, 9-35.
49. V. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross, N. M. Markovic, J. Rossmeisl, J. Greeley, J. K. Nørskov, Angewandte Chemie International Edition 2006, 45, 2897-2901.
50. J. K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jonsson, The Journal of Physical Chemistry B 2004, 108, 17886.
51. J. Greeley, I. E. L. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen, T. F. Jaramillo, RossmeislJ, ChorkendorffI, J. K. Nørskov, Nature Chemistry 2009, 1, 552- 556.
52. J. Rossmeisl, G. S. Karlberg, T. Jaramillo, J. K. Norskov, Faraday Discussions 2009, 140, 337-346.
53. Q. Jia, K. Caldwell, J. M. Ziegelbauer, A. Kongkanand, F. T. Wagner, S. Mukerjee, D. E.Ramaker, Journal of The Electrochemical Society 2014, 161, F1323-F1329. 54.B. Hammer, J. K. Norskov, Nature 1995, 238-240.
55. A. Stassi, C. D’urso, V. Baglio, A. Di Blasi, V. Antonucci, A. S. Arico, A. M. Castro Luna, A. Bonesi, W. E. Triaca, Journal of Applied Electrochemistry 2006, 36, 1143- 1149.
56. R. N. Singh, R. Awasthi, C. S. Sharma, International Journal of Electrochemical Science
2014, 5607 - 5639.
57. V. Komanicky, A. Menzel, K.-C. Chang, H. You, The Journal of Physical Chemistry B 2005, 109, 23543-23549.
58. N. N. Kariuki, X. Wang, J. R. Mawdsley, M. S. Ferrandon, S. G. Niyogi, J. T. Vaughey, D. J. Myers, Chemistry of Materials 2010, 22, 4144-4152.
59. J. H. Sinfelt, Bimetallic Catalysts: Discoveries, Concepts and Applications, John Wiley &
Sons, London 1983.
60. F. Maroun, F. Ozanam, O. M. Magnussen, R. J. Behm, Science 2001, 293, 1811-1814.
61. P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M. F. Toney, A. Nilsson, Nature Chemistry 2010, 2, 454-460.
62. J. R. Kitchin, J. K. Nørskov, M. A. Barteau, J. G. Chen, Physical Review Letters 2004, 93, 156801.
63. S. J. Hwang, S. J. Yoo, S. Jang, T.-H. Lim, S. A. Hong, S.-K. Kim, The Journal of Physical Chemistry C 2011, 115, 2483-2488.
64. K. D. Beard, D. Borrelli, A. M. Cramer, D. Blom, J. W. Van Zee, J. R. Monnier, ACS Nano 2009, 3, 2841-2853.
65. V. Stamenkovic, B. S. Mun, M. Arenz, K. J. J. Mayerhofer, C. A. Lucas, G. Wang, P. N. Ross, N. Markovic, Nature Materials 2007, 6, 241.
66. J. Zhang, F. H. B. Lima, M. H. Shao, K. Sasaki, J. X. Wang, J. Hanson, R. R. Adzic, The
Journal of Physical Chemistry B 2005, 109, 22701-22704.
67. J. Zhang, Y. Mo, M. B. Vukmirovic, R. Klie, K. Sasaki, R. R. Adzic, The Journal of Physical Chemistry B 2004, 108, 10955-10964.
68. W. Tang, G. Henkelman, The Journal of Chemical Physics 2009, 130, 194504.
69. Z. Shi, J. Zhang, Z.-S. Liu, H. Wang, D. P. Wilkinson, Electrochimica Acta 2006, 51, 1905-1916.
70. R. A. Sidik, A. B. Anderson, Journal of Electroanalytical Chemistry 2002, 528, 69-76.
71. P. R. Sajanlal, T. S. Sreeprasad, A. K. Samal, T. Pradeep, Nano Reviews 2011, 2, 10.3402/nano. v3402i3400.5883.
72. S. Trasatti, O. A. Petrii, Pure and Applied Chemistry 1991, 63, 711-734.
73. K. Huang, K. Sasaki, R. R. Adzic, Y. Xing, Journal of Materials Chemistry 2012, 22, 16824-16832.
74. S. Iijima, Nature 1991, 56-58.
75. J. E. Muller, O. Jepsen, O. K. Andersen and J. W. Wilkins, Physical Review Letters, 978, 40, 720-722.
76. J. A. McCaulley, Phys. Rev. B 47, 4873 1993.
77. J. A. McCaulley, Phys. Rev. B 48, 666 1993.
78. I. Nefedov, Y. V. Salyn, I. I. Moiseev, A. P. Sadovskii, A. S. Berenbljum, A. G. Knizhnik and S. L. Mund, Inorganica Chimica Acta, 1979, 35, L343-L344. 79. W. D. Schneider and C. Laubschat, Journal, 23, 997-1005-1997-1005. 80. Barkholtz, H. M.; Gallagher, J. R.; Li, T.; Liu, Y.; Winans, R. E.; Miller, J. T.; Liu, D. J.; Xu, T. Lithium Assisted “Dissolution–Alloying” Synthesis of Nanoalloys from Individual Bulk Metals. Chem. Mater. 2016, 28, 2267.
81. Guo, P.; Song, H. and Chen, X. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochemistry Communications. 2009, 11, 1320–1324