研究生: |
廖琪雯 Liao, Chi-Wen |
---|---|
論文名稱: |
4-硝基聯苯與2-硝基芴在溶液中激發態緩解動力學的飛秒雷射光譜研究 Femtosecond Laser Spectroscopic Studies of Ultrafast Excited-State Dynamics of 4-Nitrobiphenyl and 2-Nitrofluorene in Liquid Solutions |
指導教授: |
鄭博元
Cheng, Po-Yuan |
口試委員: |
劉振霖
Liu, Chen-Lin 林竣偉 Lin, Chun-Wei |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 137 |
中文關鍵詞: | 時間解析光譜 、激發態動力學 、瞬態吸收光譜 、2-硝基芴 、4-硝基聯苯 |
外文關鍵詞: | Time-Resolved Spectroscopy, Excited State Dynamics, Transient Absorption, 2-Nitrofluorene, 4-Nitrobiphenyl |
相關次數: | 點閱:44 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文透過實驗室自行架設的超快時間解析螢光(time-resolved fluorescence, TRFL)光譜儀與超快瞬態吸收(transient absorption, TA)光譜儀研究4-硝基聯苯(4-nitobiphenyl, 4-NBP)與2-硝基芴(2-nitrofluorene, 2-NF)在cyclohexane (CHX)及acetonitrile (ACN)中的激發態動力學行為,最後以理論計算的結果輔助解析分子的緩解機制。靜態吸收光譜及理論計算的結果顯示,4-NBP及2-NF在短波長(310 nm和320 nm)激發下主要被激發至1(ππ*)態,而在長波長(360 nm)激發下,依溶劑極性不同可被激發至1(nπ*)態或1(nπ*)/1(ππ*)態。而不同激發波長下的瞬態吸收光譜揭示了1(nπ*)態和1(ππ*)態的ESA訊號雖有著相同時間尺度的生命期(τ_(1 )< 100 fs),但1(nπ*)態的ESA吸收峰範圍較1(ππ*)態寬廣許多且位於不同光區。此外,瞬態吸收光譜中還有一需以三個時間常數進行擬合的長壽命triplet state ESA訊號,τ_(2a )(~1.4-2 ps)為triplet state的internal conversion (IC),τ_3(~10 ps)為triplet state的vibration relaxation (VR),τ_4(數十ns) 反映能量最低的triplet state (T1)回到ground state的過程。在時間解析螢光光譜中,放光訊號隨激發波長變長而紅移,並可以biexponential decay模型擬合出τ_1小於100 fs,τ_2f約為0.4至2 ps。綜合實驗與理論計算之結果,兩分子不論被激發到S1或S2態後,皆傾向經由超快ISC緩解至triplet state,少部分會伴隨VR緩解至能量較低之vibrational state時發生稍慢之ISC。本研究首次清楚觀察到1(nπ*)態在瞬態吸收光譜中的特徵吸收及其動力學行為,為瞭解這類分子的激發態動力學提供了新的視角。
We investigate the excited-state relaxation dynamics of 4-nitrobiphenyl (4-NBP) and 2-nitroflourene in acetonitrile (ACN) and cyclohexane (CHX) solutions using a home-built ultrafast time-resolved fluorescence spectrometer (TRFL) and ultrafast transient absorption (TA) spectrometer. The experimental findings are complemented by theoretical calculations to elucidate the excited-state relaxation mechanisms of these molecules. Steady-state absorption spectra and theoretical calculations indicate that 4-NBP and 2-NF are predominantly excited to the 1(ππ*) state at shorter wavelengths (310 nm and 320 nm), while at longer wavelengths (360 nm), they can be excited to either the 1(nπ*) state or a mixture of 1(nπ*)/1(ππ*) states, depending on the solvent polarity. Transient absorption spectra at different excitation wavelengths reveal that both 1(nπ*) and 1(ππ*) state exhibit excited-state absorption (ESA) signals with similar lifetimes (τ_1< 100 fs), but the ESA band of the 1(nπ*) state is significantly broader and occurs in different spectral regions compared to the 1(ππ*) state. Additionally, the spectra show a long-lived triplet state ESA signal, which requires fitting with three time constants: τ_(2a )(~1.4-2 ps) for triplet state internal conversion (IC), τ_(3 )(~10 ps) for triplet state vibrational relaxation (VR), and τ_(4 )(tens of nanoseconds) for the return of the lowest energy triplet state (T1) to the ground state. Time-resolved fluorescence spectra show a redshift in the emission signal with increasing excitation wavelength, and a biexponential decay model fits the data with τ_1 less than 100 fs and τ_(2f )of approximately 0.4 to 2 ps. Combining experimental and theoretical results, it is evident that both molecules preferentially relax to the triplet state via ultrafast intersystem crossing (ISC) after excitation to either the S1 or S2 state, with a minor portion undergoing ISC accompanied by VR to lower vibrational states. This study provides the first clear observation of the characteristic absorption and dynamics of the 1(nπ*) state in transient absorption spectra, offering new insights into the excited state dynamics of these molecules.
1. Penfold, T.; F. DiasA.P. Monkman, The theory of thermally activated delayed fluorescence for organic light emitting diodes. Chem. Commun., 2018, 54(32), 3926-3935.
2. Uoyama, H.; K. Goushi; K. Shizu; H. NomuraC. Adachi, Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 2012, 492(7428), 234-238.
3. Marian, C.M., Understanding and Controlling Intersystem Crossing in Molecules. Annu. Rev. Phys. Chem., 2021, 72(1), 617-640.
4. Englman, R.J. Jortner, The energy gap law for radiationless transitions in large molecules. Mol. Phys., 1970, 18(2), 145-164.
5. McCusker, J.K., Femtosecond absorption spectroscopy of transition metal charge-transfer complexes. Acc. Chem. Res., 2003, 36(12), 876-887.
6. Thurston, R.; M.M. Brister; L.Z. Tan; E.G. Champenois; S. Bakhti; P. Muddukrishna; T. Weber; A. Belkacem; D.S. SlaughterN. Shivaram, Ultrafast dynamics of excited electronic states in nitrobenzene measured by ultrafast transient polarization spectroscopy. J. Phys. Chem. A, 2020, 124(13), 2573-2579.
7. Takezaki, M.; N. HirotaM. Terazima, Relaxation of nitrobenzene from the excited singlet state. J. Chem. Phys., 1998, 108(11), 4685-4686.
8. Rodríguez-Córdoba, W.; L. Gutiérrez-Arzaluz; F. Cortés-GuzmánJ. Peon, Excited state dynamics and photochemistry of nitroaromatic compounds. Chem. Commun., 2021, 57(92), 12218-12235.
9. Tsuga, Y.; M. Katou; S. Kuwabara; T. Kanamori; S.I. Ogura; S. Okazaki; H. OhtaniH. Yuasa, A Twist-Assisted Biphenyl Photosensitizer Passable Through Glucose Channel. Chem. Asian J., 2019, 14(12), 2067-2071.
10. Plaza-Medina, E.F.; W. Rodríguez-Córdoba; R. Morales-CuetoJ. Peon, Primary Photochemistry of Nitrated Aromatic Compounds: Excited-State Dynamics and NO· Dissociation from 9-Nitroanthracene. J. Phys. Chem. A, 2011, 115(5), 577-585.
11. Penfold, T.J.; E. Gindensperger; C. DanielC.M. Marian, Spin-vibronic mechanism for intersystem crossing. Chem. Rev., 2018, 118(15), 6975-7025.
12. Vogt, R.A.; C. ReichardtC.E. Crespo-Hernández, Excited-State Dynamics in Nitro-Naphthalene Derivatives: Intersystem Crossing to the Triplet Manifold in Hundreds of Femtoseconds. J. Phys. Chem. A, 2013, 117(30), 6580-6588.
13. Morales-Cueto, R.; M. Esquivelzeta-Rabell; J. Saucedo-ZugazagoitiaJ. Peon, Singlet Excited-State Dynamics of Nitropolycyclic Aromatic Hydrocarbons: Direct Measurements by Femtosecond Fluorescence Up-Conversion. J. Phys. Chem. A, 2007, 111(4), 552-557.
14. Crespo-Hernández, C.E.; G. BurdzinskiR. Arce, Environmental Photochemistry of Nitro-PAHs: Direct Observation of Ultrafast Intersystem Crossing in 1-Nitropyrene. J. Phys. Chem. A, 2008, 112(28), 6313-6319.
15. López-Arteaga, R.; A.B. Stephansen; C.A. Guarin; T.I. SøllingJ. Peon, The Influence of Push–Pull States on the Ultrafast Intersystem Crossing in Nitroaromatics. J. Phys. Chem. B, 2013, 117(34), 9947-9955.
16. 王芃云, 以超快時間解析飛秒雷射光譜研究反-4-硝基均二苯乙烯於溶液中之激發態動態學. 國立清華大學, 2022,
17. Wang, P.-Y.; Y.-C. Hsu; P.-H. Chen; G.-Y. Chen; Y.-K. LiaoP.-Y. Cheng, Solvent-polarity dependence of ultrafast excited-state dynamics of trans-4-nitrostilbene. Phys. Chem. Chem. Phys., 2024, 26(2), 788-807.
18. 許友誠, 以飛秒雷射光譜研究4-硝基聯苯於液相溶液中之超快激發態動態學. 國立清華大學, 2023,
19. 陳品勳, 以超快時間解析雷射光譜研究4-硝基聯苯於溶液中之激發態緩解動力學. 國立清華大學, 2023,
20. 陳冠宇, 以飛秒瞬態吸收光譜研究苯/四氰基乙烯錯合物於極性溶劑中電荷轉移態與局部激發態之電荷轉移動力學. 國立清華大學, 2020,
21. Fleming, G.R., Chemical applications of ultrafast spectroscopy. 1986,
22. Lakowicz, J.R., Principles of fluorescence spectroscopy. 2nd ed.; Plenum Press:New York. 1999.
23. Boyd, R., Nonlinear Optics. Academic Press, 1992,
24. Kalpouzos, C.; W.T. Lotshaw; D. McMorrowG.A. Kenney-Wallace, Femtosecond laser-induced Kerr responses in liquid carbon disulfide. J. Phys. Chem., 1987, 91(8), 2028-2030.
25. Appavoo, K.M.Y. Sfeir, Enhanced broadband ultrafast detection of ultraviolet emission using optical Kerr gating. Rev. Sci. Instrum., 2014, 85(5), 055114.
26. Arzhantsev, S.M. Maroncelli, Design and Characterization of a Femtosecond Fluorescence Spectrometer Based on Optical Kerr Gating. Appl. Spectrosc., 2005, 59(2), 206-220.
27. Lorenc, M.; M. Ziolek; R. Naskrecki; J. Karolczak; J. KubickiA. Maciejewski, Artifacts in femtosecond transient absorption spectroscopy. Appl. Phys. B, 2002, 74(1), 19-27.
28. Zugazagoitia, J.S.; E. Collado-Fregoso; E.F. Plaza-MedinaJ. Peon, Relaxation in the triplet manifold of 1-nitronaphthalene observed by transient absorption spectroscopy. J. Phys. Chem. A, 2009, 113(5), 805-810.
29. Snellenburg, J.J.; S. Laptenok; R. Seger; K.M. MullenI.H.M. van Stokkum, Glotaran: A Java-Based Graphical User Interface for the R Package TIMP. J. Stat. Softw., 2012, 49(3), 1 - 22.
30. Frisch, M.J.; G.W. Trucks; H.B. Schlegel; G.E. Scuseria; M.A. Robb; J.R. Cheeseman; G. Scalmani; V. Barone; G.A. Petersson; H. Nakatsuji; X. Li; M. Caricato; A.V. Marenich; J. Bloino; B.G. Janesko; R. Gomperts; B. Mennucci; H.P. Hratchian; J.V. Ortiz; A.F. Izmaylov; J.L. Sonnenberg; Williams; F. Ding; F. Lipparini; F. Egidi; J. Goings; B. Peng; A. Petrone; T. Henderson; D. Ranasinghe; V.G. Zakrzewski; J. Gao; N. Rega; G. Zheng; W. Liang; M. Hada; M. Ehara; K. Toyota; R. Fukuda; J. Hasegawa; M. Ishida; T. Nakajima; Y. Honda; O. Kitao; H. Nakai; T. Vreven; K. Throssell; J.A. Montgomery Jr.; J.E. Peralta; F. Ogliaro; M.J. Bearpark; J.J. Heyd; E.N. Brothers; K.N. Kudin; V.N. Staroverov; T.A. Keith; R. Kobayashi; J. Normand; K. Raghavachari; A.P. Rendell; J.C. Burant; S.S. Iyengar; J. Tomasi; M. Cossi; J.M. Millam; M. Klene; C. Adamo; R. Cammi; J.W. Ochterski; R.L. Martin; K. Morokuma; O. Farkas; J.B. ForesmanD.J. Fox, Gaussian 16 Rev. C.01. 2016: Wallingford, CT.
31. Yu, H.S.; X. He; S.L. LiD.G. Truhlar, MN15: A Kohn-Sham global-hybrid exchange-correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. Chem. Sci., 2016, 7(8), 5032-5051.
32. Li, B.; T.-S. Zhang; J. Xue; B.-B. Xie; W.-H. FangL. Shen, Theoretical studies on the photochemistry of 2-nitrofluorene in the gas phase and acetonitrile solution. Phys. Chem. Chem. Phys., 2020, 22(29), 16772-16782.
33. Neese, F.; F. Wennmohs; U. BeckerC. Riplinger, The ORCA quantum chemistry program package. J. Chem. Phys., 2020, 152(22),
34. Plaza-Medina, E.F.; W. Rodríguez-CórdobaJ. Peon, Role of Upper Triplet States on the Photophysics of Nitrated Polyaromatic Compounds: S1 Lifetimes of Singly Nitrated Pyrenes. J. Phys. Chem. A, 2011, 115(35), 9782-9789.