簡易檢索 / 詳目顯示

研究生: 李依平
Lee, Iping
論文名稱: 高分子液相剝離法與氧化還原法製備石墨烯應用於二氧化氮氣體感測器之研究
NO2 Gas Sensor Based on Polymer-exfoliated Graphene Nanoplatelets and Reduced Graphene Oxide
指導教授: 衛子健
Wei, Tzu-Chien
口試委員: 竇維平
李建良
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 91
中文關鍵詞: 石墨烯二氧化氮氣體感測器氧化還原法高分子液相剝離法
外文關鍵詞: graphene, nitrogen dioxide, gas sensor, reduced graphene oxide, polymer exfoliation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究以二步驟浸塗法製備石墨烯氣體感測元件,高分子液相剝離法及氧化還原法石墨烯則被選為石墨烯材料製備方法,其具有可在室溫下操作、製備成本低且元件製作步驟簡單等優點。
    基於環境及成本考量,高分子液相剝離法選擇了水作為石墨烯分散液的溶劑及具有立體空間特性的高分子polyvinylpyrrolidone(PVP)作為分散劑,利用高強度超音波震盪24小時使石墨粉剝離成石墨烯片狀分散於溶劑中成功製備出PVP包覆石墨烯奈米薄片(PVP-graphene)分散液。氧化還原石墨烯(rGO)則以修正Hummer’s法將石墨進行氧化作用得到氧化石墨烯,再使用低毒性還原劑—硫脲替代常用高毒性之還原劑聯氨,並以水熱還原法進行還原反應得到氧化還原石墨烯,最後以PVP做為分散劑得PVP-rGO分散液。由拉曼光譜及XPS能譜分析顯示,PVP-graphene的基面雖未受到嚴重的氧化及其他的鍵結破壞,但因在高強度超音波震盪下而產生了邊界缺陷,rGO則因氧化還原反應造成了缺陷及接上了含氧官能基。
    石墨烯氣體感測元件以二步驟浸塗法進行製備,利用整孔劑先對基板進行表面改質後進而在電極間製作石墨烯薄膜,並對不同濃度之NO2氣體進行感測,最後以真空加熱做為感測元件之回復方法。所得NO2氣體感測曲線經過擬合之後,數據結果顯示PVP-rGO感測曲線中,反應較慢(R2)之吸附曲線佔最終response值的比例較PVP-graphene還要來得大,代表接上的含氧官能基團使感測性能得到了提升。最終則以Freundlich吸附理論關係式取得最後的氣體感測校準線。


    In this study, we report a simple two-step dip coating” process to fabricate reproducible chemiresistive NO2 gas sensor based on graphene materials. This gas sensor is able to operate at room temperature with good sensitivity. Herein, we use polymer-capped graphene nanoplatelets suspension prepared by liquid phase exfoliation(LPE)and reduced graphene oxide(rGO) approach as sensing material.
    In LPE method, we choose harmless polyvinylpyrrolidone(PVP) as intercalator and water as solvent. With the help of high-power sonication, the hydrophobic graphite powder is exfoliated into PVP-capped graphene nanoplatelets aqueous dispersion(PVP-graphene). Characterized by X-ray photoelectron spectroscopy, transmission electron microscope and Raman spectroscopy, PVP-graphene nanoplatelets features boundary defects and lateral dimension of a few hundred nanometers. For rGO, firstly, we use modified Hummer’s method to produce graphene oxide. Then for the reduce process, the commonly-used hydrazine, which is known to be extremely dangerous and harmful is replaced by less-harmful thiourea as the reducing agent. Through a series of characterization, home-made rGO features both defects and oxygen functional groups. . Meanwhile, PVP is also used as the dispersant to fabricate aqueous dispersion(PVP-rGO)
    The sensing device is prepared by two-step dip coating. The first step uses commercial cationic surfactant to modify the substrate’s surface to facilitate the chemisorption of graphene materials in the subsequent step. Vacuum heat treatment is used as recovery method for sensors. Both sensing curves obtained from PVP-graphene and PVP-rGO are found to be well fit using double exponential model, which indicates multiple sensing sites exist on the graphene materials PVP-rGO sensing fitting result shows that the slow reaction(R2), which is dominated by defects or functional groups, accounts for total response relatively higher than PVP-graphene. The result shows that oxygen functional groups can provide additional sensing sites and thus improve the sensitivity. The calibration lines of these NO2 sensors are obtained by using Freundlich adsorption equation.

    第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 實驗理論與文獻回顧 5 2.1 石墨烯氣體感測 5 2.1.1 石墨烯氣體感測機制 5 2.2石墨烯發展 8 2.3石墨烯製備方法 11 2.3.1機械剝離法(mechanical exfoliation) 11 2.3.2碳化矽磊晶成長法(epitaxial growth) 12 2.3.3化學氣相沉積法(chemical vapor deposition, CVD) 13 2.3.4氧化還原法(reduction of graphene oxide ) 14 2.3.5超音波液相剝離法(liquid phase exfoliation) 15 2.3.6 石墨烯製備方法比較 22 2.4 石墨烯氣體感測第一性原理模擬 23 2.5 改質奈米碳管、石墨烯氣體感測器 26 2.5.1 氧化奈米碳管 26 2.5.2 氧化還原石墨烯(reduced graphene oxide, rGO) 28 2.6 氣體吸附模型 30 2.6.1弗羅因德利希方程(Freundlich equation): 30 2.6.2朗繆耳方程(Langmuir equation): 31 第三章 實驗儀器設備與材料 33 3.1 實驗儀器及原理: 33 3.1.1穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 33 3.1.2原子力顯微鏡(Atomic Force Microscope, AFM) 34 3.1.3 拉曼光譜儀(Raman spectroscopy) 34 3.1.4 X 射線光電子能譜儀 (X-ray photoelectron spectroscopy, XPS) 39 3.1.5 X-光繞射儀(x-ray diffractometer, XRD) 40 3.1.6 傅立葉轉換紅外線光譜儀(Fourier-transform infrared spectrometer, FTIR) 41 3.2 藥品、材料與儀器 42 第四章 實驗與結果討論 44 4.1氣體感測系統建立 44 4.1.1人機介面 45 4.1.2氣體感測系統操作步驟 47 4.2 石墨烯的製備 49 4.2.1 PVP-graphene分散液製備 49 4.2.2 rGO及PVP-rGO分散液製備 50 4.3 石墨烯感測元件製備 52 4.4 石墨烯材料分析 54 4.4.1 PVP-graphene材料分析 54 4.4.1.1 穿透式電子顯微鏡分析(TEM) 54 4.4.1.2 原子力顯微鏡分析(AFM) 55 4.4.1.3 X 射線光電子能譜儀分析(XPS) 57 4.4.1.4 拉曼光譜分析(RAMAN spectra) 58 4.4.2 rGO材料分析 59 4.4.2.1 穿透式電子顯微鏡分析(TEM) 59 4.4.2.2 原子力顯微鏡分析(AFM) 60 4.4.2.3 X-光繞射分析(XRD) 61 4.4.2.4 傅立葉轉換紅外光譜分析(FTIR) 63 4.4.2.5 X射線光電子能譜儀分析(XPS) 64 4.4.2.6 拉曼光譜分析(RAMAN) 65 4.5 兩種石墨烯材料之材料特性綜整 66 4.6 NO2氣體感測實驗結果 67 4.7 PVP-G-cell和PVP-rGO-cell氣體感測結果比較 72 4.7.1 氣體感測曲線擬合 73 4.7.2 PVP-G-cell和PVP-rGO-cell氣體感測比較 79 4.8氣體感測校準線 80 4.9目前石墨烯材料NO2感測比較 82 第五章 結論 84 第六章 未來工作 86 參考文獻 87

    1. You, Y.; Deng, J.; Tan, X.; Gorjizadeh, N.; Yoshimura, M.; Smith, S. C.; Sahajwalla, V.; Joshi, R. K., On the mechanism of gas adsorption for pristine, defective and functionalized graphene. Phys Chem Chem Phys 2017, 19 (8), 6051-6056.
    2. http://taqm.epa.gov.tw/taqm/tw/b0202.aspx.
    3. http://www.hse-mag.com/it/archivio/Vol.-11-n.2/.
    4. http://www.2cm.com.tw/zoomin_content.asp?sn=0912020016.
    5. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666-669.
    6. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S., Detection of individual gas molecules adsorbed on graphene. Nat Mater 2007, 6 (9), 652-655.
    7. Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 2004, 108 (52), 19912-19916.
    8. Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K., Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 2008, 100 (1).
    9. Dorkel, J. M.; Leturcq, P., Carrier Mobilities in Silicon Semi-Empirically Related to Temperature, Doping and Injection Level. Solid State Electron 1981, 24 (9), 821-825.
    10. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of graphene oxide. Chem Soc Rev 2010, 39 (1), 228-40.
    11. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45 (7), 1558-1565.
    12. Withers, F.; Dubois, M.; Savchenko, A. K., Electron properties of fluorinated single-layer graphene transistors. Phys Rev B 2010, 82 (7).
    13. Robinson, J. T.; Burgess, J. S.; Junkermeier, C. E.; Badescu, S. C.; Reinecke, T. L.; Perkins, F. K.; Zalalutdniov, M. K.; Baldwin, J. W.; Culbertson, J. C.; Sheehan, P. E.; Snow, E. S., Properties of Fluorinated Graphene Films. Nano Lett 2010, 10 (8), 3001-3005.
    14. Xu, C.; Wang, X.; Zhu, J. W., Graphene-Metal Particle Nanocomposites. J Phys Chem C 2008, 112 (50), 19841-19845.
    15. Kong, J.; Franklin, N. R.; Zhou, C. W.; Chapline, M. G.; Peng, S.; Cho, K. J.; Dai, H. J., Nanotube molecular wires as chemical sensors. Science 2000, 287 (5453), 622-625.
    16. Ko, G.; Kim, H. Y.; Ahn, J.; Park, Y. M.; Lee, K. Y.; Kim, J., Graphene-based nitrogen dioxide gas sensors. Curr Appl Phys 2010, 10 (4), 1002-1004.
    17. Chen, G.; Paronyan, T. M.; Harutyunyan, A. R., Sub-ppt gas detection with pristine graphene. Appl Phys Lett 2012, 101 (5).
    18. Kroto, H. W.; Heath, J. R.; Obrien, S. C.; Curl, R. F.; Smalley, R. E., C-60 - Buckminsterfullerene. Nature 1985, 318 (6042), 162-163.
    19. Iijima, S., Helical Microtubules of Graphitic Carbon. Nature 1991, 354 (6348), 56-58.
    20. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat Mater 2007, 6 (3), 183-191.
    21. Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; Sood, A. K., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol 2008, 3 (4), 210-215.
    22. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene. Rev Mod Phys 2009, 81 (1), 109-162.
    23. Somani, P. R.; Somani, S. P.; Umeno, M., Planer nano-graphenes from camphor by CVD. Chem Phys Lett 2006, 430 (1-3), 56-59.
    24. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457 (7230), 706-710.
    25. Brodie, B. C., On the Atomic Weight of Graphite. Phil. Trans. R. Soc. Lond. 1859, 149, 249-259.
    26. Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. J Am Chem Soc 1958, 80 (6), 1339-1339.
    27. Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A., Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 2006, 110 (17), 8535-8539.
    28. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 2008, 3 (9), 563-568.
    29. Girifalco, L. A.; Good, R. J., A Theory for the Estimation of Surface and Interfacial Energies .1. Derivation and Application to Interfacial Tension. J Phys Chem-Us 1957, 61 (7), 904-909.
    30. Ooi, N.; Rairkar, A.; Adams, J. B., Density functional study of graphite bulk and surface properties. Carbon 2006, 44 (2), 231-242.
    31. Khan, U.; May, P.; O'Neill, A.; Coleman, J. N., Development of stiff, strong, yet tough composites by the addition of solvent exfoliated graphene to polyurethane. Carbon 2010, 48 (14), 4035-4041.
    32. Wang, X. Q.; Fulvio, P. F.; Baker, G. A.; Veith, G. M.; Unocic, R. R.; Mahurin, S. M.; Chi, M. F.; Dai, S., Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids. Chem Commun 2010, 46 (25), 4487-4489.
    33. Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z. M.; McGovern, I. T.; Duesberg, G. S.; Coleman, J. N., Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. J Am Chem Soc 2009, 131 (10), 3611-3620.
    34. Hao, R.; Qian, W.; Zhang, L. H.; Hou, Y. L., Aqueous dispersions of TCNQ-anion-stabilized graphene sheets. Chem Commun 2008, (48), 6576-6578.
    35. Bourlinos, A. B.; Georgakilas, V.; Zboril, R.; Steriotis, T. A.; Stubos, A. K.; Trapalis, C., Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes. Solid State Commun 2009, 149 (47-48), 2172-2176.
    36. O'Connell, M. J.; Boul, P.; Ericson, L. M.; Huffman, C.; Wang, Y. H.; Haroz, E.; Kuper, C.; Tour, J.; Ausman, K. D.; Smalley, R. E., Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 2001, 342 (3-4), 265-271.
    37. Wehling, T. O.; Novoselov, K. S.; Morozov, S. V.; Vdovin, E. E.; Katsnelson, M. I.; Geim, A. K.; Lichtenstein, A. I., Molecular doping of graphene. Nano Lett 2008, 8 (1), 173-177.
    38. Leenaerts, O.; Partoens, B.; Peeters, F. M., Adsorption of H(2)O, NH(3), CO, NO(2), and NO on graphene: A first-principles study. Phys Rev B 2008, 77 (12).
    39. Horváth, Z. E.; Koós, A. A.; Kertész, K.; Molnár, G.; Vértesy, G.; Bein, M. C.; Frigyes, T.; Mészáros, Z.; Gyulai, J.; Biró, L. P., The role of defects in chemical sensing properties of carbon nanotube films. Applied Physics A 2008, 93 (2), 495-504.
    40. Fowler, J. D.; Allen, M. J.; Tung, V. C.; Yang, Y.; Kaner, R. B.; Weiller, B. H., Practical Chemical Sensors from Chemically Derived Graphene. Acs Nano 2009, 3 (2), 301-306.
    41. Robinson, J. T.; Perkins, F. K.; Snow, E. S.; Wei, Z. Q.; Sheehan, P. E., Reduced Graphene Oxide Molecular Sensors. Nano Lett 2008, 8 (10), 3137-3140.
    42. Lu, G. H.; Ocola, L. E.; Chen, J. H., Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 2009, 20 (44).
    43. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K., Raman spectrum of graphene and graphene layers. Phys Rev Lett 2006, 97 (18).
    44. Solin, S. A., Raman and Ir Studies of Graphite Intercalates. Physica B & C 1980, 99 (1-4), 443-452.
    45. Ferrari, A. C., Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun 2007, 143 (1-2), 47-57.
    46. Backes, C.; Paton, K. R.; Hanlon, D.; Yuan, S.; Katsnelson, M. I.; Houston, J.; Smith, R. J.; McCloskey, D.; Donegan, J. F.; Coleman, J. N., Spectroscopic metrics allow in situ measurement of mean size and thickness of liquid-exfoliated few-layer graphene nanosheets. Nanoscale 2016, 8 (7), 4311-4323.
    47. Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S.; Casiraghi, C., Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Lett 2012, 12 (8), 3925-3930.
    48. Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S., Raman spectroscopy in graphene. Phys Rep 2009, 473 (5-6), 51-87.
    49. Lin, T. Q.; Chen, J.; Bi, H.; Wan, D. Y.; Huang, F. Q.; Xie, X. M.; Jiang, M. H., Facile and economical exfoliation of graphite for mass production of high-quality graphene sheets. J Mater Chem A 2013, 1 (3), 500-504.
    50. Borodko, Y.; Habas, S. E.; Koebel, M.; Yang, P. D.; Frei, H.; Somorjai, G. A., Probing the interaction of poly( vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR. J Phys Chem B 2006, 110 (46), 23052-23059.
    51. Botas, C.; Alvarez, P.; Blanco, C.; Santamaria, R.; Granda, M.; Gutierrez, M. D.; Rodriguez-Reinoso, F.; Menendez, R., Critical temperatures in the synthesis of graphene-like materials by thermal exfoliation-reduction of graphite oxide. Carbon 2013, 52, 476-485.
    52. De, S.; King, P. J.; Lotya, M.; O'Neill, A.; Doherty, E. M.; Hernandez, Y.; Duesberg, G. S.; Coleman, J. N., Flexible, Transparent, Conducting Films of Randomly Stacked Graphene from Surfactant-Stabilized, Oxide-Free Graphene Dispersions. Small 2010, 6 (3), 458-464.
    53. H. Hu, M. T., M.E. Nicho, J.M. Saniger, A. Garcia-Valenzuela, Adsorption kinetics of optochemical NH3 gas sensing with semiconductor polyaniline films. 2002, 82 (1), 14-23.
    54. Huang, L.; Wang, Z.; Zhang, J.; Pu, J.; Lin, Y.; Xu, S.; Shen, L.; Chen, Q.; Shi, W., Fully printed, rapid-response sensors based on chemically modified graphene for detecting NO2 at room temperature. ACS Appl Mater Interfaces 2014, 6 (10), 7426-33.
    55. Yavari, F.; Castillo, E.; Gullapalli, H.; Ajayan, P. M.; Koratkar, N., High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene. Appl Phys Lett 2012, 100 (20), 203120.
    56. Chung, M. G.; Kim, D. H.; Lee, H. M.; Kim, T.; Choi, J. H.; Seo, D. k.; Yoo, J.-B.; Hong, S.-H.; Kang, T. J.; Kim, Y. H., Highly sensitive NO2 gas sensor based on ozone treated graphene. Sensors and Actuators B: Chemical 2012, 166-167, 172-176.
    57. Lee, C.; Ahn, J.; Lee, K. B.; Kim, D.; Kim, J., Graphene-based flexible NO2 chemical sensors. Thin Solid Films 2012, 520 (16), 5459-5462.

    QR CODE