研究生: |
姜敬凡 Chiang, Ching-Fan |
---|---|
論文名稱: |
自調式學習與測驗試題之模式設計—— 以高中生物科遺傳學單元為例 Self-Regulated Learning and Mode design of Test Implemented in the High School Biology Course: the Genetics Unit as an Example |
指導教授: |
廖冠智
Liao, Guan-Ze |
口試委員: |
邱富源
Chiu, Fu-Yuan 劉奕帆 Liu, Yi-Fan |
學位類別: |
碩士 Master |
系所名稱: |
清華學院 - 學習科學研究所 Institute of Learning Sciences |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 130 |
中文關鍵詞: | 自調式學習 、遺傳學 、電子化測驗 、高中 、生物 |
外文關鍵詞: | self-regulated learning, Genetics, electronic testing, high school, biology |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
遺傳學在現代生命科學領域中,佔有重要的地位,包涵許多瞭解微觀生命世界所需的基礎核心概念,是發展諸多生物科技技術必須掌握的關鍵知識。而對於遺傳學知識的理解,牽涉較為複雜的知識建構過程,需要學習者對於學習過程中所存在的闕漏、誤解、混淆等有一定的自察能力,若無法融會貫通,則容易淪為停留在短期記憶的無效學習。
本研究以高中生物科遺傳學單元的內容為例,旨在透過測驗試題之模式設計,建立一套具有「自調式學習」效果的電子化測驗試卷。試卷設計的步驟包括解構高中生物遺傳學單元課程中的概念知識、提取出關鍵名詞,建立出以主題概念為知識結構的試卷輪廓。接著,進行測驗試題的蒐集、標籤、分級與改寫,以建立試題資料庫。最後,將試題以概念拼圖和知識節點的形式進行串聯,並加入學習引導的內容,將作答順序與引導步驟設計在試卷的跳接題邏輯之中。
該份測驗通過電子化問卷的方式進行,公開招募桃竹地區的22位受試者,包含研究所11位、大學部10位、高中3位之在學學生,期中20位為非生醫領域相關科系;測後也輔以半結構性的深度訪談,以瞭解作答邏輯的合理性與對學習引導的效果。本研究嘗試從知識概念拼圖、試題難易分級、作答跳接邏輯、即時學習指引、測驗數據分析等多個角度進行探究,期望拓展試題與學習者之間的關係,把自調節式的學習歷程跟學習工具的結構進行結合,成為具有自調節式學習效果的電子化測驗試題,以引導學習者發現自己的認知破口、提供「自察」的方向,解除學習障礙,達到課程的學習目標。
研究結果發現,本測驗模式具有學習引導的效果,包含有效偵錯以及有效的概念學習。其中,前端基礎概念以及後端實驗應用、運算之表現效果皆良好,但對於遺傳法則的理論學習則表現效果較弱。本研究的主要貢獻在於,建立一種新的「自調式測驗」模式,讓測驗具有即時回饋、引導學習,啟動自調節學習行動、引發學習策略運用的效果。
Genetics plays an important role in the field of modern life sciences. It contains many basic concepts in the microscopic world of life for us to understand. It is the key knowledge that must be mastered to promote biotechnology development. Understanding knowledge of Genetics involves a complex process of knowledge construction. Learners need to have the ability to detect learning problems, including concept gaps, misunderstandings, confusions, etc. If we could not thoroughly master different concepts and apply them appropriately, it will easily become invalid learning for short-term memory.
In this study, the content of high school Biology Genetics unit, for example, it aims to create a set of electronic test with the effect of self-regulated learning through the design of test questions. The steps of test design include deconstructing the conceptual knowledge in the high school Biology Genetics unit, extracting key terms, and sketching the outline of the test using key concepts as the knowledge structure. Then collect, tag, rating, and rewrite test questions to establish an item bank. Finally, the test questions are connected in the form of concept puzzles and a series of knowledge nodes. The content of learning guidance is added into the test in which the jump logic is designed according to the answer sequence and guidance steps.
The test was conducted through an electronic questionnaire, and 22 subjects from the were openly recruited in Hsinchu and Taoyuan, including 11 graduate students, 10 undergraduate students, and 3 high school students, of which 20 do not study in the biology nor biomedical fields. Related departments. After the test, a semi-structured in-depth interview is supplemented to understand the rationality of the answer logic and the effect of learning guidance.
This research attempts to explore from multiple perspectives such as knowledge concept puzzles, difficulty grading of test questions, jump logic in answering, real-time learning guidance, test data analysis, and so on. It is hoped to expand the relationship between test questions and learners, combine the self-regulated learning process with the structure of learning tools, and become an electronic test with self-regulated learning effects. It is expected that this test mode can guide learners to discover their concept gaps. It can help learners to do self-debug and remove learning obstacles, master the content of each knowledge node in the learning unit, and finally establish a complete knowledge structure to achieve the learning objectives of the course.
The results found that this test mode played a role of learning guidance, including effective error detection and effective concept learning. Among all thematic concepts, the learning guidance effect on the test question of basic concepts, experiment applications, and probability calculations is well. However, the learning guidance effect on the theoretical study of the genetic law is less effective.
The main contribution of this research lies in the establishment of a new "self-regulated test" mode, which allows the test to have instant feedback and learning guidance. It achieves the effect of making learners start self-adjusting learning actions and trigger the use of learning strategies.
1. 林建平(2005)。自律學習的理論與研究趨勢。國教新知,52(2)
2. 國家教育研究院雙語詞彙、學術名詞暨辭書資訊。檢自https://terms.naer.edu.tw
3. 李勇輝(2017)。學習動機、學習策略與學習成效關係之研究-以數位學習為例。經營管理學刊,14,68-86
4. 林清文(2002)自我調整課業學習模式在課業學習諮商的應用。彰化師大輔導學報,23,229 – 275
5. Boticki, I., Baksa, J., Seow, P., & Looi, C. K. (2015). Usage of a mobile social learning platform with virtual badges in a primary school. Computers & Education, 86, 120-136.
6. Domingo, M. G., & Gargante, A. B. (2016). Exploring the use of educational technology in primary education: Teachers’ perception of mobile technology learning impacts and applications’ use in the classroom. Computers in Human Behavior, 56, 21-28.
7. Hwang, G.-J., & Chang, H.-F. (2011). A formative assessment-based mobile learning approach to improving the learning attitudes and achievements of students. Computers & Education, 56(4), 1023-1031.
8. Hwang, G.-J., Tsai, C.-C., & Yang, S. J.-H. (2008). Criteria, strategies and research issues of context-aware ubiquitous learning. Educational Technology & Society, 11(2), 81- 91.
9. Hwang, G.-J., Chu, H.-C., Yin, C., & Ogata, H. (2015). Transforming the educational settings: Innovative designs and applications of learning technologies and learning environments. Interactive Learning Environments, 23(2), 127-129.
10. Azevedo, R., Moos, D. C., Greene, J. A., Winters, F. I., & Cromley, J. C. (2008). Why is externally regulated learning more effective than self-regulated learning with hypermedia? Educational Technology Research and Development, 56(1), 45-72.
11. Kramarski, B., & Gutman, M. (2006). How can self-regulated learning be supported in mathematical e-learning environments? Journal of Computer Assisted Learning, 22(1), 24-33.
12. Winters, F. I., Greene, J. A., & Costich, C. M. (2008). Self-regulation of learning within computerbased learning environments: A critical analysis. Educational Psychology Review, 20(4), 429-444.
13. Wang, T.-H. (2011). Developing web-based assessment strategies for facilitating junior high school students to perform self-regulated learning in an e-Learning environment. Computers & Education, 57(2), 1801-1812.
14. Brusilovsky, P. (2001). Adaptive hypermedia. User Modeling and User Adapted Interaction, 6(2-3), 87-110.
15. Jacobson, M., & Archodidou, A. (2000). The design of hypermedia tools for learning: Fostering conceptual change and transfer of complex scientifi c knowledge. Journal of the Learning Sciences, 9(2), 145-199.
16. Paris, S. G., & Paris, A. H. (2001). Classroom applications of research on self-regulated learning. Educational Psychologist, 36(2), 89-101.
17. Zimmerman, B. J., & Kitsantas, A. (1997). Development phases in self-regulation: Shifting from process goals to outcome goals. Journal of Educational Psychology, 89(1), 29-36.
18. 伍柏翰(2017)。結合即時診斷機制的行動學習與自我調整學習模式對學生運用概念圖的學習成就與行為之影響。數位學習科技期刊,9(2)
19. Chang, C.-C., Tseng, K.-H., Liang, C., & Liao, Y.-M. (2013). Constructing and evaluating online goal-setting mechanisms in web-based portfolio assessment system for facilitating self-regulated learning. Computers & Education, 69, 237-249.
20. Zimmerman, B. J.,D. H. Schunk (Eds.)(1989). Self-regulated learning and academic achievement: Theory research and practice.New York:Springer-Verlag.
21. Pintrich. P. R.,DeGroot, E. V. (1990).Motivational and self-regulated learning Components of classroom academic performance.Journal of Educational Psychology,82,33-40.
22. Zimmerman, B. J.,M. Boeknerts,P. R. Pintrieh (Eds.)(2000). Handbook of self-regulation.CA:Academic Press.
23. McKeachie, W. J.,Pintrich, P. R.,Lin, Y. (1985). Teaching learning strategies. Educational Psychologist, 20, 153-160.
24. Brown, A.,Campione, J. C.,Day, J. D. (1981). Learning to learning: or training students to learn from tests. Educational Researcher, 10, 1421.
25. Shrager, L., Mayer. R. E. (1989). Note-taking fosters generative learning strategies in novices. Journal of Educational Psychology, 81(2),263-264.
26. Biggs, J. B. (1985). The role of metalearning in study processes. British Journal Education Psychology, 55, 185-212.
27. Watkins, D. (2000). Learning and teaching: a cross-cultural perspective. School Leadership & Management, 20, 161-173.
28. 黃政傑、張嘉育(2010)。讓學生成功學習:適性課程與教學之理念與策略。課程與教學季刊,13(3),1-22
29. 劉育隆、曾筱倩、郭伯臣(2006)以知識結構為基礎之適性測驗系統建置。測驗統計年刊,14(下),17-35
30. 高博銓(2006)。適性教學的理念與實施策略。教育資料與研究雙月刊,69,261-274
31. 陳學志(2015)。適性教學的理論與實踐。中等教育,67(1),1-2
32. Brusilovsky, P., and Pesin, L. (1996). Visual annotation of links in adaptive hypermedia, Conference companion on Human factors in computing systems, pp. 222-223.
33. Brusilovsky, P., Bra, P. D., Eklund, J., Hall, W., and Kobsa, A. (1999). Adaptive hypermedia(panel): purpose, methods, and techniques, Proceedings of the tenth ACM Conference on Hypertext and hypermedia: returning to our diverse roots. pp.199-200.
34. 柯澎傑(2003)。以網路適性化學習歷程調整適性化測驗起始能力之研究,義守大學資訊工程學系碩士班學位論文。
35. 林芸含(2016)。適性診斷與補救教學於高中數學之應用-以「直線方程式及其圖形」單元為例。國立臺中教育大學教育資訊與測驗統計研究所學位論文。
36. 林建文(2016)。適性診斷與補救教學於高中數學之應用-以「平面向量的幾何表示法」單元為例。國立臺中教育大學教育資訊與測驗統計研究所學位論文。
37. 黃武元、王錦裕、楊岱霖(2001)。適性化學習系統。全球華人科技研討會
38. 蘇廷筠等(2014)。應用中文能力檢定線上評量系統規劃與測試。國立雲林科技大學工業工程與管理系實務專題報告
39. 李宜勳(2000)。傳統選擇題的命題原則。測驗統計簡訊。34期,22-28
40. 侯妤青(2001),智慧型題庫模型建構之探討,彰化師範大學商業教育學系,碩士論文
41. Millman, J. & Arter,J. A. “Issue in banking”. Journal of Educational Measurement, 21(4) 1984, PP:315-330
42. 洪碧霞(1991),題庫建立時的思考,題庫專輯。
43. Booth, J. A.G. (1983). Computerization of trade examinations: A feasibility study ( Tech. Rep. No. B83-1). Ottawa: Canada Employment and Immigration Commission, Training Branch.
44. Mead, R. J. (1981). Basic ideas in item banking. Paper presentation the annual meeting of the National Council on Measurement in Education, Los Angeles (ED208029)
45. Lippey, G. (1974). Overview. In G. Lippey (ED.), Computerassisted test construction (pp. 1-28). Englewood cliffs, NJ: educational Technology Publications.
46. 余民寧(1993)。試題反應理論的介紹(十二)--電腦化適性測驗。研習資訊, Vol.10, No.5, pp.5-9
47. Lord, F. M. (1977) Practical application of item characteristic curve theory. Journal of Educational Measurement, 14, 117-138.
48. Green, B. F., Bock, R. D., Humphreys, L. G,, Linn, R. L., & Reckase, M. D. (1984). Technical guidelines for assessing computerized adaptive testing. Journal of Educational Measurement, 21, 347-360.
49. 何榮桂(2000)量身訂製的測驗-適性測驗,測驗與輔導,157,3288-3293。
50. 吳承恩、白宗懿(2017)美國「全國共同標準及評量」與臺灣「國中教育會考」之比較及其意涵
51. 國家華語測驗推動工作委員會-測驗類別 https://tocfl.edu.tw/test/fitness/list/1
52. 教育部因材網 https://adl.edu.tw/modules.php?op=main
53. 教育部國民小學及國民中學學習扶助方案科技化評量(PRIORI-tbt)網站
54. 教育部新課綱銜接教材數位平台網站
55. 等位基因。檢自https://highscope.ch.ntu.edu.tw/wordpress/?p=69953
56. 等位基因。檢自http://www.phyworld.idv.tw/BA_BIO/BOOK_1/htm/2-2_POINT.htm
57. 同源染色體。檢自https://pedia.cloud.edu.tw/Content/uploadWord/word583_201905091647220.jpg
58. 同源染色體。檢自https://annieglinbioweb.weebly.com/uploads/3/0/8/0/30809259/8296216_orig.png
https://youtu.be/Gx2DY5l5O-s
59. 染色體套數。檢自https://youtu.be/ngbYBPjG63o?t=270
60. 基因型與表現型。檢自https://youtu.be/N-4KRT6R6h4?t=276
61. 孟德爾實驗。檢自https://youtu.be/I90iop48a_s
62. 純品系。檢自http://moodle2.thsh.tp.edu.tw/mod/page/view.php?id=731