研究生: |
許若瑋 Jo-Wei Hsu |
---|---|
論文名稱: |
序列子集疊代式影像重建法在小動物PET照影上之應用 Iterative Ordered-Subsets Algorithms for Small Animal PET Imaging |
指導教授: |
許靖涵
Ching-Han Hsu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 小動物正子斷層掃描 、列運算最大相似度演算法 、疊代式影像重建演算法 |
外文關鍵詞: | microPET, RAMLA, Iterative reconstruction algorithms |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
正子斷層掃描提供核醫藥物在活體內的活度分佈,除了可獲得功能性的影像,還可進而利用其資訊進行藥物動力學與癌症治療等相關研究,所以廣泛的為前臨床實驗與臨床診斷所使用。然而對於小動物正子斷層掃描,由於光子數的限制造成較大的影像雜訊。因此如何選擇快速兼具穩定的影像重建方法,仍是一個很重要的議題。
本研究的目的為探討序列子集疉代式影像重建法的效能。臨床上最常使用的演算法為序列子集均值與最佳化演算法(OSEM),由於此演算法將收斂速度大幅提升;列運算最大相似度演算法(RAMLA)利用鬆弛係數於每一次疊代中控制運算,使重建影像可穩定收斂至真實值;收斂序列子集均值最大化演算法(COSEM)則是利用完整資料的觀念重新推導相似度函數而來,可達到穩定收斂且避免鬆弛係數選擇的問題。實驗中除了利用假體影像進行驗證,也使用Siemens Inveon MicroPET小動物的正子斷層掃描儀進行大鼠實驗得到的正弦圖來研究這三種演算法的收斂特性與可行性。
從結果中可發現列運算最大相似度演算法重建的影像與其他三種演算法相比,兼具著高速率與穩定性,在相同的資料運算量及耗時下,列運算演算法更適用在小動物正子斷層掃描。
參考文獻
1. Liang, H., Yang, Y., Yang, K., Wu, Y., Boone J. M., and Cherry, S. R., “A MicroPET/CT System for in Vivo Small Animal Imaging,” Physics Medicine and Biology, vol. 52, pp. 3881-3894,2007
2. Fahey, F. H., “Data Acquisition in PET Imaging”, Journal of Nuclear Medicine Technology, Vol. 30,NO. 2, 2002.
3. Panin, Y. V., Kehren, F., Michel C., and Casey, M., “Fully 3-D PET Reconstruction With System Matrix Derived From Point Source Measurements,” IEEE Transactions on Medical Imaging, Vol. 25, No. 7 , pp. 907-921, 2006.
4. Kaufman, L., “Implementing and Accelerating the EM Algorithm for Positron Emission Tomography”, IEEE transactions on Medical Imaging, Vol. MI-6, No. 1 , pp. 37-51, 1987.
5. Jinyi, Q., and Richard M. L., “Iterative reconstruction techniques in emission computed tomography,” Physics Medicine and Biology, vol.51, pp.541-578, 2006.
6. Shepp, L. A., and Vardi, Y., “Maximum Likelihood Reconstruction for Emission Tomography,”IEEE Transactions on Medical Imaging, Vol. 1, No. 2 , pp. 113-122, 1982.
7. Vardi, Y. L., Shepp, L. A., and Kaufman, L., “A Statistical Model for Position Emission Tomography,” Journal of American Statistical Association, Vol. 180, No.389, pp.8-20, 1985 .
8. Hudson, H. M. and Larkin R. S., “Accelerated Image Reconstruction Using Ordered Subsets of Projection Data,” IEEE Transactions on Medical Imaging, Vol. 13, no.4, pp. 601-609,1994.
9. Yair, C. ”Finite Series-Expansion Reconstruction Methods,” Processdings of The IEEE , vol. 71, no. 3, pp.409-419, 1983
10. Browne, T. and De Pierro, A., “A Row-Action Alternative to the EM Algorithm for Maximizing Likelihoods in Emission Tomography,” IEEE Transactions on Medical Imaging, Vol.15, No. 5, pp. 687-699, 1996.
11. Tanaka, T. and Kudo, H.,”Subset-Dependent Relaxation in Block -Iterative Algorithms for Image Reconstruction in emission Tomography,” Physics Medicine and Biology, Vol.48, pp. 1405-1422, 2003.
12. Charles, L.B., “Accelerating The EMML Algorithm and Related Iterative Algorithm by Rescaled Block-Iterative Methods,” IEEE Transactions on Medical Processing, vol.7, no. 1, pp.100-109, 1998.
13. Hsiao, I. T., Rangarajan, A. and Gindi, G., “A Provably Convergent OS-EM Like Reconstruction Algorithm for Emission Tomography”, Proc. SPIE Medical Imaging Conference , 2002.
14. Rangarajan, A., Khurd, P., Hsiao. I. T., and Gindi, G., “Convergence Proofs for the COSEM-ML and COSEM-MAP Algorithms”, Technical Report MIPL-03-1, Medical Image Processing Lab, department of Radiology, SUNY Stony Brook.
15. Hsiao, I. T., Rangarajan, A. Khurd P., and Gindi, G., “An Accelerated Convergent Ordered Subsets Algorithm for Emission Tomography”, Physics Medicine and Biology, Vol.49, pp. 2145-2156, 2004.