簡易檢索 / 詳目顯示

研究生: 陳昭宏
Chao-Hung Chen
論文名稱: 在超凸度量空間上的推廣型2-gKKM定理及其應用
Generalized 2-gKKM theorem in hyperconvex metric spaces and its applications
指導教授: 張東輝
Tong-Huei Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 24
中文關鍵詞: 超凸度量空間2-gKKM定理同值點定理固定點定理匹配定理變分不等式
外文關鍵詞: Hyperconvex metric space, 2-gKKM theorem, coincidence theorem, matching theorem, fixed point theorem, variational inequality
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們證明在超凸度量空間上的推廣型2-gKKM 定理。利用此定理,我們證得一些匹配定理、同值點定理及固定點定理。在應用方面,我們利用此推廣型2-gKKM 定理,證明一些變分不等式的存在性定理。


    In this paper, we prove a generalized 2-gKKM theorem in hyperconvex metric space. By using this theorem we get a matching theorem, a coincidence theorem, and some fixed point theorems under some assumptions. As applications, we use this generalized 2-gKKM theorem to establish some existence theorems about variational inequalities.

    1. INTRODUCTION--------------------------------------------5 2. PRELIMINARIES-------------------------------------------6 3. MAIN RESULTS-------------------------------------------11 4. APPLICATIONS-------------------------------------------18 5. REFERENCES---------------------------------------------22

    [1] A. Amini, M. Fakhar, and J. Zafarani, KKM mappings in metric spaces, Nonlinear Anal. 60(2005), 1045-1052.
    [2] N. Aronszajn, and P. Panitchpakdi, Extensions of uniformly continuous
    transformations and hyperconvex metric spaces, Pacific J. Math. 6(1956)
    405-439.
    [3] K. C. Border, Fixed point theorems with applications to economics and game
    theory, Cambridge University Press, 1989.
    [4] S. S. Chang and Y. Zhang, Generalized KKM theorem and variational inequalities,
    J. Math. Anal. Appl. 159(1991), 208-233.
    [5] T. H. Chang and C. L. Yen, KKM property and fixed point theorems, J. Math.
    Anal. Appl. 203(1996), 224-235.
    [6] C. H. Chang and T. H. Chang, Generalized 2-KKM theorem and its applications in hyperconvex metric spaces and its applications , Graduate Institute of Applied Mathematics , NHCUE , Hsinchu , Taiwan .(2006)
    [7] X. P. Ding, Y. C. Liou, and J. C. Yao, Generalized R-KKM type theorems in topological spaces with applications, Appl. Math. Letters. 18(2005), 1345-1350.
    [8] L. A. Dung and D. H. Tan, Some applications of the KKM-mapping principle in
    hyperconvex metric spaces, Nonlinear Anal.66(2007),170-178.
    [9] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann.
    142(1961),305-310.
    [10] K. Fan, Some properties of convex sets related to fixed point theorem, Math. Ann. 266(1984), 519-537.
    [11] H. C. Huang and T. H. Chang, Generalized KKM theorem and its applications on hyperconvex metric spaces , Graduate Institute of Applied Mathematics , NHCUE , Hsinchu , Taiwan .(2006)
    [12] J. C. Jeng, H. C. Hsu, and Y. Y. Huang, Fixed point theorem for multifuntions having KKM property on almost convex sets, J. Math. Anal. Appl. 319(2006), 187-198.
    [13] B. Knaster, C. Kuratowski, and S. Mazurkiewicz, Ein Beweis des Fixpunksatzes
    fur n-dimensionale simplexe, Fund. Math. 14(1929),132-137.
    [14] M. A. Khamsi, KKM and Ky Fan Theorems in Hyperconvex Metric Spaces, J.
    Math. Anal. Appl. 204(1996),298-306.
    [15] W. A. Kirk, B. Sims, and G. X .Z. Yuan, The Knaster-Kuratowski and
    Mazurkiewicz theory in hyperconvex metric spaces and some of its applications,
    Nonlinear Anal. 39(2000), 611-627.
    [16] Y. L. Lee, G-S-KKM theorem and its applications, Graduate Institute of
    Mathematics and Science, NHCTC, Hsin Chu, Taiwan. (2003).
    [17] L. J. Lin and W. P. Wan, KKM type theorems and coincidence theorems with
    applications to the existence of equilibria, J. Optim. Theory Appl. 123(1)(2004),
    105-122.
    [18] L. J. Lin, Applications of a fixed point theorem in G-convex space, Nonlinear Anal. 46(2001), 601-608.
    [19] L. J. Lin and T. H. Chang, S-KKM theorems, saddle points and minimax inequalities, Nonlinear Anal. 34(1998), 73-86.
    [20] J. T. Markin, Best approximation and fixed point theorems in hyperconvex metric spaces, Nonlinear Anal. 63(2005) ,1841-1846.
    [21] S. Park, Fixed point theorems in hyperconvex metric spaces, Nonlinear Anal.
    37(1999), 467-472.
    [22] N. Shioji, A further generalization of the Knaster-Kuratowski-Mazurkiewicz
    theorem, Proc. Amer. Math. Soc. 111(1991), 187-195.
    [23] K. K. Tan, G-KKM theorem, minimax inequalities and saddle points, Nonlinear Anal. 30(1997), 4151-4160.
    [24] E. Tarafdar and G. X. Z. Yuan, Some Applications of the Knaster-Kuratowski and Mazurkiewicz Principle in Hyperconvex Metric Spaces, Math. and Comput. Modelling. 32(2000),1311-1320.
    [25] G. Q. Tina, Generalized KKM theorem, minimax inequalities and their
    applications, J. Optim. Theory Appl. 83(1994), 375-389.
    [26] C. F. Tsou and T. H. Chang, Generalized variational inequality theorems and minimax inequality theorems on hyperconvex metric spaces, Graduate Institute of Applied Mathematics , NHCUE , Hsinchu , Taiwan .(2006)
    [27] N. T. Vinh, Matching theorems, fixed point theorems and minimax inequalities in topological ordered spaces, Acta. Math. Vietnamica. 30(2005), 211-224.
    [28] G. X. Z. Yuan, The Charactreization of Generalized Metric KKM Mappings with
    Open Values in Hyperconvex Metric Spaces and Some Applications, J. Math.
    Anal. Appl. 235(1999), 315-325.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE