研究生: |
陳昭宏 Chao-Hung Chen |
---|---|
論文名稱: |
在超凸度量空間上的推廣型2-gKKM定理及其應用 Generalized 2-gKKM theorem in hyperconvex metric spaces and its applications |
指導教授: |
張東輝
Tong-Huei Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
南大校區系所調整院務中心 - 應用數學系所 應用數學系所(English) |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 24 |
中文關鍵詞: | 超凸度量空間 、2-gKKM定理 、同值點定理 、固定點定理 、匹配定理 、變分不等式 |
外文關鍵詞: | Hyperconvex metric space, 2-gKKM theorem, coincidence theorem, matching theorem, fixed point theorem, variational inequality |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,我們證明在超凸度量空間上的推廣型2-gKKM 定理。利用此定理,我們證得一些匹配定理、同值點定理及固定點定理。在應用方面,我們利用此推廣型2-gKKM 定理,證明一些變分不等式的存在性定理。
In this paper, we prove a generalized 2-gKKM theorem in hyperconvex metric space. By using this theorem we get a matching theorem, a coincidence theorem, and some fixed point theorems under some assumptions. As applications, we use this generalized 2-gKKM theorem to establish some existence theorems about variational inequalities.
[1] A. Amini, M. Fakhar, and J. Zafarani, KKM mappings in metric spaces, Nonlinear Anal. 60(2005), 1045-1052.
[2] N. Aronszajn, and P. Panitchpakdi, Extensions of uniformly continuous
transformations and hyperconvex metric spaces, Pacific J. Math. 6(1956)
405-439.
[3] K. C. Border, Fixed point theorems with applications to economics and game
theory, Cambridge University Press, 1989.
[4] S. S. Chang and Y. Zhang, Generalized KKM theorem and variational inequalities,
J. Math. Anal. Appl. 159(1991), 208-233.
[5] T. H. Chang and C. L. Yen, KKM property and fixed point theorems, J. Math.
Anal. Appl. 203(1996), 224-235.
[6] C. H. Chang and T. H. Chang, Generalized 2-KKM theorem and its applications in hyperconvex metric spaces and its applications , Graduate Institute of Applied Mathematics , NHCUE , Hsinchu , Taiwan .(2006)
[7] X. P. Ding, Y. C. Liou, and J. C. Yao, Generalized R-KKM type theorems in topological spaces with applications, Appl. Math. Letters. 18(2005), 1345-1350.
[8] L. A. Dung and D. H. Tan, Some applications of the KKM-mapping principle in
hyperconvex metric spaces, Nonlinear Anal.66(2007),170-178.
[9] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann.
142(1961),305-310.
[10] K. Fan, Some properties of convex sets related to fixed point theorem, Math. Ann. 266(1984), 519-537.
[11] H. C. Huang and T. H. Chang, Generalized KKM theorem and its applications on hyperconvex metric spaces , Graduate Institute of Applied Mathematics , NHCUE , Hsinchu , Taiwan .(2006)
[12] J. C. Jeng, H. C. Hsu, and Y. Y. Huang, Fixed point theorem for multifuntions having KKM property on almost convex sets, J. Math. Anal. Appl. 319(2006), 187-198.
[13] B. Knaster, C. Kuratowski, and S. Mazurkiewicz, Ein Beweis des Fixpunksatzes
fur n-dimensionale simplexe, Fund. Math. 14(1929),132-137.
[14] M. A. Khamsi, KKM and Ky Fan Theorems in Hyperconvex Metric Spaces, J.
Math. Anal. Appl. 204(1996),298-306.
[15] W. A. Kirk, B. Sims, and G. X .Z. Yuan, The Knaster-Kuratowski and
Mazurkiewicz theory in hyperconvex metric spaces and some of its applications,
Nonlinear Anal. 39(2000), 611-627.
[16] Y. L. Lee, G-S-KKM theorem and its applications, Graduate Institute of
Mathematics and Science, NHCTC, Hsin Chu, Taiwan. (2003).
[17] L. J. Lin and W. P. Wan, KKM type theorems and coincidence theorems with
applications to the existence of equilibria, J. Optim. Theory Appl. 123(1)(2004),
105-122.
[18] L. J. Lin, Applications of a fixed point theorem in G-convex space, Nonlinear Anal. 46(2001), 601-608.
[19] L. J. Lin and T. H. Chang, S-KKM theorems, saddle points and minimax inequalities, Nonlinear Anal. 34(1998), 73-86.
[20] J. T. Markin, Best approximation and fixed point theorems in hyperconvex metric spaces, Nonlinear Anal. 63(2005) ,1841-1846.
[21] S. Park, Fixed point theorems in hyperconvex metric spaces, Nonlinear Anal.
37(1999), 467-472.
[22] N. Shioji, A further generalization of the Knaster-Kuratowski-Mazurkiewicz
theorem, Proc. Amer. Math. Soc. 111(1991), 187-195.
[23] K. K. Tan, G-KKM theorem, minimax inequalities and saddle points, Nonlinear Anal. 30(1997), 4151-4160.
[24] E. Tarafdar and G. X. Z. Yuan, Some Applications of the Knaster-Kuratowski and Mazurkiewicz Principle in Hyperconvex Metric Spaces, Math. and Comput. Modelling. 32(2000),1311-1320.
[25] G. Q. Tina, Generalized KKM theorem, minimax inequalities and their
applications, J. Optim. Theory Appl. 83(1994), 375-389.
[26] C. F. Tsou and T. H. Chang, Generalized variational inequality theorems and minimax inequality theorems on hyperconvex metric spaces, Graduate Institute of Applied Mathematics , NHCUE , Hsinchu , Taiwan .(2006)
[27] N. T. Vinh, Matching theorems, fixed point theorems and minimax inequalities in topological ordered spaces, Acta. Math. Vietnamica. 30(2005), 211-224.
[28] G. X. Z. Yuan, The Charactreization of Generalized Metric KKM Mappings with
Open Values in Hyperconvex Metric Spaces and Some Applications, J. Math.
Anal. Appl. 235(1999), 315-325.