簡易檢索 / 詳目顯示

研究生: 洪德儒
論文名稱: 可變增益之0.35um矽鍺5.25GHz射頻前端積體電路設計
A Variable-Gain 0.35um SiGe 5.25GHz RF Front-End Integrated Circuit
指導教授: 龔正
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 75
中文關鍵詞: 可變增益放大器射頻接收器混波器低雜訊放大器5.25GHz矽鍺
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,將探討各種接收器架構的優劣,而相較於傳統式的超外插接收器,直接降頻接收器擁有較佳的積體化能力,同時擁有較低的功率消耗,高品質因子(Q)的被動元件,將有助於RF-SOC,進而使接收器能達到同時存在多頻段,多規格的使用。
    雖然直接降頻接收擁有許多優勢,但仍存在著許多缺點,而最令人詬病的在於其架構會有直流偏移的重大缺失。本論文將改變電路架構,在傳統的低雜訊放大器及混波器之間置入一個可變增益放大器,使接收器本地震盪端到射頻端的隔絕度提升,自然直流偏移跟著下降。另外也把此放大器,利用特別的增益控制方式,加強接收器對射頻輸入訊號的動態接收範圍,同時在低增益模式也能擁有較高的線性度(P1dB>1dBm),以接受較大訊號的輸入。
    而利用BiCMOS所做的收發器(如GSM/GPRS/DCS/PCS, WLAN, Bluetooth and DECT),都已分別被發表出, 目前必須考量的一大重點即是RF-SOC(RF-system- on- chip),使能適用於多頻帶、多規格同時存在的蜂巢式系統,如圖1.2。同時,RF-SOC的雜訊干擾必須盡量減少,電路簡單、功率消耗低、成本低。而其實高頻電路設計的性能往往取決於元件層級,故在製程的選擇上顯得重要。CMOS其優點為線性度高,成本低;BJT的轉導大、功率消耗低,同時所產生雜訊亦較低[3][4],如圖1.3。結合兩者優點,在此提出以BiCMOS SiGe製程進行電路研製。
    這裡藉由tsmc所提供的SiGe 0.35um BiCMOS製程,製作相關電路,包含低雜訊放大器、可變增益放大器及混波器,並整合成一簡單的前端接收器。


    目 錄 摘 要 誌 謝 目 錄 圖目錄 表目錄 第一章 緒論……………………………………………………………………01 1.1研究動機……………………………………………………………01 1.2元件選擇……………………………………………………………04 1.3論文簡介……………………………………………………………05 第二章 接收機系統理論……………………………………………………06 2.1基本考量……………………………………………………………07 2.1.1非線性度影響 ………………………………………………07 2.1.2雜訊指數 ……………………………………………………14 2.2超外插接收器………………………………………………………16 2.3直接降頻接收器……………………………………………………18 2.4鏡像消除接收器……………………………………………………21 第三章 5.25GHz RF-VGA之電路設計與模擬……………………………27 3.1 RF-VGA架構選擇 …………………………………………………29 3.2電流控制式RF-VGA之電路設計及模擬…………………………30 3.2.1設計考量及晶片佈局 ………………………………………30 3.2.2模擬結果 ……………………………………………………33 3.2.3結果分析 ……………………………………………………36 3.3退化端控制式RF-VGA之電路設計及模擬………………………37 3.3.1線性度分析…………………………………………………37 3.3.2設計考量……………………………………………………40 3.3.3模擬結果……………………………………………………42 3.3.4結果分析……………………………………………………45 3.4結語………………………………………………………………46 第四章 5.25GHz混波器之電路設計與模擬……………………………47 4.1規格參數…………………………………………………………47 4.1.1轉換增益……………………………………………………47 4.1.2信號隔離度…………………………………………………47 4.1.3 SSB和DSB雜訊指數………………………………………48 4.2主動式混波器原理…………………………………………………50 4.2.1單平衡式混波器……………………………………………50 4.2.2雙平衡式混波器……………………………………………51 4.3雙端平衡混波器設計與製作………………………………………54 4.4雙端平衡混波器模擬與結果………………………………………57 4.5結語…………………………………………………………………61 第五章 5.25GHz射頻前端電路之整合……………………………………63 5.1低雜訊放大器………………………………………………………63 5.1.1工作原理……………………………………………………63 5.1.2模擬結果……………………………………………………64 5.2整合低雜訊放大器、RF-VGA、混波器之設計……………………68 5.3整合後之模擬結果…………………………………………………69 5.4結語…………………………………………………………………73 第六章 結論……………………………………………………………………75 參考文獻

    參考文獻
    [1]Zargari, M.; Su, D.K.; Yue, C.P.; Rabii, S.; Weber, D.; Kaczynski, B.J.; Mehta, S.S.; Singh, K.; Mendis, S.; Wooley, B.A.; ”A 5-GHz CMOS transceiver for IEEE 802.11a wireless LAN systems”, IEEE Journal of Solid-State Circuits, Pages:1688 - 1694, Volume: 37 , Issue: 12 , Dec. 2002

    [2] Samavati, H.; Rategh, H.R.; Lee, T.H.; “A 5-GHz CMOS wireless LAN receiver front end”, IEEE Journal of Solid-State Circuits, Pages:765 - 772, Volume: 35 , Issue: 5 , May 2000

    [3] Lie, D.Y.C.; Xiaojuen Yuan; Larson, L.E.; Wang, Y.H.; Senior, A.; Mecke, J.; ” "RF-SoC": low-power single-chip radio design using Si/SiGe BiCMOS technology”, 2002 3rd International Conference on Microwave and Millimeter Wave Technology, Proceedings. Pages: 30 – 37, ICMMT 2002, 17-19 Aug. 2002

    [4]Larson, L.E., ”Integrated circuit technology options for RFICs-present status and future directions”, IEEE Journal of Solid-State Circuits, Pages:387 – 399, Volume: 33 , Issue: 3 , March 1998

    [5]Matsuzawa, A.; “RF-SoC-expectations and required conditions”, IEEE Transactions on Microwave Theory and Techniques, Pages: 245 – 253, Volume: 50, Issue: 1, Jan. 2002

    [6]Raja, M.K.; Boon, T.T.C.; Kumar, K.N.; Wong Sheng Jau; “A fully integrated variable gain 5.75-GHz LNA with on chip active balun for WLAN” Radio Frequency Integrated Circuits (RFIC) Symposium, Pages:439 - 442 2003 IEEE , 8-10 June 2003,

    [7]B. Razavi, “RF MICROELECTRONICS”, Prentice Hall, 1998

    [8]Rofougaran, A.; Chang, J.Y.-C.; Rofougaran, M.; Abidi, A.A.;” A 1 GHz CMOS RF front-end IC for a direct-conversion wireless receiver” IEEE Journal of Solid-State Circuits, Pages:880 – 889 Volume: 31 , Issue: 7 , July 1996

    [9]Thomas H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits” Cambridge University Press, 2001.

    [10]A. Abidi, “Direct-conversion radio transceivers for digital communications,”IEEE J. Solid-State Circuits, vol. 30, pp. 1399–1410, Dec. 1995.

    [11]Seungwooi Lee; Keewook Jung; Wonchan Kim; Hyunkyu Ryu; Wonchul Song; “A 1 GHz image-rejection down-converter in 0.8 μm CMOS technology” IEEE Transactions on Consumer Electronics, Pages:235 – 239 Volume: 44, Issue: 2, May 1998

    [12]Rahul Magoon, Member, IEEE, Alyosha Molnar, Jeff Zachan, Member, IEEE, Geoff Hatcher, Member, IEEE, and Woogeun Rhee, Member, IEEE” A Single-Chip Quad-Band (850/900/1800/1900 MHz) Direct Conversion GSM/GPRS RF Transceiver with Integrated VCOs and Fractional-N Synthesizer” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 12, DECEMBER 2002

    [13]Behzad Razavi.McGraw-Hill, “Design of analog CMOS integrated circuits” 2001

    [14]Won Namgoong, Member, IEEE, and Teresa H. Meng, Fellow, IEEE” Direct- Conversion RF Receiver Design” IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 49, NO. 3, MARCH 2001

    [15]Crols, J.; Steyaert, M.S.J.;” A single-chip 900 MHz CMOS receiver front-end with a high performance low-IF topology” IEEE Journal of Solid-State Circuits, Pages:1483 – 1492, Volume: 30 , Issue: 12 , Dec. 1995 ,

    [16]D. K. Weaver, “A Third Method of Generation and Detection of Single-Sideband Signals”Proc. IRE, Vol. 44, pp. 1703-1705, December 1956

    [17]Hao-Shun Yang “Area and Cost Effectiveness of RF Front-End Integrated Circuits” Communication National Tsing Hua University, 2002

    [18]Wu, S.; Razavi, B.;” A 900-MHz/1.8-GHz CMOS receiver for dual-band applications” IEEE Journal of Solid-State Circuits, Pages: 2178 – 2185, Volume: 33, Issue: 12, Dec. 1998,

    [19]Kwang-Jin Koh; Yong-Sik Youn; Hyun-Kyu Yu;” A gain boosting method at RF frequency using active feedback and its application to RF variable gain amplifier (VGA)”, ISCAS 2002. IEEE International Symposium on Circuits and Systems, Pages: III-89 - III-92 vol.3 Volume: 3 , 26-29 May 2002

    [20]Elwan, H.; Soliman, A.M.; Ismail, M.;” A CMOS Norton amplifier-based digitally controlled VGA for low-power wireless applications” Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on [see also Circuits and Systems II: Express Briefs, IEEE Transactions on], Pages: 245 – 254 Volume: 48 , Issue: 3 , March 2001
    [21]D. Y. C. Lie et al., “A Direct Conversion W-CDMA Front-End SiGe Receiver Chip”, IEEE RFIC Symposium, pp 31~34, 2002.

    [22]Tsang, T.K.K.; El-Gamal, M.N., ” Gain and frequency controllable sub-1 V 5.8 GHz CMOS LNA” Circuits and Systems, 2002.. IEEE International Symposium on ISCAS 2002, Pages:IV-795 - IV-798 vol.4 Volume: 4 , 26-29 May 2002

    [23]Ken Leong Fong;, ” Dual-band high-linearity variable-gain low-noise amplifiers for wireless applications” Solid-State Circuits Conference, 1999. Digest of Technical Papers.. 1999 IEEE International ISSCC, Pages: 224 – 225 15-17 Feb. 1999

    [24]Aoki, Y.; Fujii, M.; Ohkubo, S.; Yoshida, S.; Niwa, T.; Miyoshi, Y.; Dodo, H.; Goto, N.; Hida, H.;” A 1.4-dB-NF variable-gain LNA with continuous control for 2-GHz-band mobile phones using InGaP emitter HBTs” Microwave Symposium Digest, 2001 IEEE MTT-S International , Pages:289 - 292 vol.1 Volume: 1 , 20-25 May 2001

    [25]Jussila, J.; Ryynanen, J.; Kivekas, K.; Sumanen, L.; Parssinen, A.; Halonen, K.A.I.;” A 22-mA 3.0-dB NF direct conversion receiver for 3G WCDMA” IEEE Journal of Solid-State Circuits , Pages:2025 – 2029 Volume: 36 , Issue: 12 , Dec. 2001

    [26]Kobayashi, K.W.; Ip, K.T.; Oki, A.K.; Umemoto, D.K.; Claxton, S.; Pope, M.; Wiltz, J.; “GaAs HBT 0.75-5 GHz multifunctional microwave-analog variable gain amplifier” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, Page(s): 239 -242, 1993. Technical Digest 1993, 15th Annual , 10-13 Oct. 1993

    [27]ALAN B. GREBENE”BIPOLAR AND MOS ANALOG INTEGRATED CIRCUIT DESIGN” New York: /J. Wiley, /c1984.

    [28]Vintola, V.T.S.; Matilainen, M.J.; Kalajo, S.J.K.; Jarvinen, E.A.;” Variable-gain power amplifier for mobile WCDMA applications” Microwave Theory and Techniques, IEEE Transactions on , Pages:2464 – 2471, Volume: 49 , Issue: 12 , Dec. 2001

    [29]Kobayashi, K.W.; Umemoto, D.K.; Block, T.R.; Oki, A.K.; Streit, D.C.;, ”A monolithically integrated HEMT-HBT low noise high linearity variable gain amplifier”, IEEE Journal of Solid-State Circuits, Pages:714 – 718, Volume: 31 , Issue: 5 , May 1996

    [30]Gray, Paul R., Meyer, Robert G., “Analysis and design of analog integrated circuits “Wiley, 2001

    [31]Keng Leong Fong; Meyer, R.G.; “High-frequency nonlinearity analysis of common-emitter and differential-pair transconductance stages” IEEE Journal of Solid-State Circuits, Pages: 548 – 555 Volume: 33, Issue: 4, April 1998

    [32]Keng Leong Fong;” High-frequency analysis of linearity improvement technique of common-emitter transconductance stage using a low-frequency-trap network” IEEE Journal of Solid-State Circuits, Pages: 1249 - 1252 Volume: 35, Issue: 8, Aug. 2000

    [33]David M. Pozar,“Microwave and RF Design of Wireless Systems”New York: Wiley, 2001

    [34]Liang-Hui Li, ”RF System Planning of 802.11a WLAN Receiver and 5GHz CMOS Differential LNA/Mixer Circuit Design”, Communication National Cheng Kung University, 2002

    [35]Thomas H. Lee, Member, IEEE, Hirad Samavati, and Hamid R. Rategh”5-GHz CMOS Wireless LANs” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 1, JANUARY 2002

    [36]Meyer, R.G.; Mack, W.D.;” A 1-GHz BiCMOS RF front-end IC”, IEEE Journal of Solid-State Circuits, Volume: 29, Pages: 350 – 355, Issue: 3, March 1994

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE