簡易檢索 / 詳目顯示

研究生: 蔡崇湋
Tsai, Chung-Wei
論文名稱: 快速傅立葉轉換法在風險管理下的應用
Fast Fourier Transform Method in Risk Management
指導教授: 韓傳祥
Han, Chuan-Hsiang
徐南蓉
Hsu, Nan-Jung
口試委員: 吳慶堂
牛繼聖
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 44
中文關鍵詞: 快速傅立葉轉換風險值隨機波動率模型離散誤差截斷誤差
外文關鍵詞: Fast Fourier Transform, value at risk, Stochastic Volatility Model, sampling error, trancation error
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們提出了使用快速傅立葉轉換(FFT)來計算風險值(VaR)的方法,一旦我們知道了標的資產價格的自然對數的特徵函數時,我們就能夠使用快速傅立葉轉換方法來計算風險值。這樣的發法是很有用的,因為在許多情況下標的資產價格的自然對數的特徵函數很容易計算。而使用快速傅立葉轉換計算風險值時我們能夠在確保準確度的情況下減少計算的時間。為了確保準確度,我們也分析了真實值與數值方法之間的誤差上界。


    In this thesis, we propose Fast Fourier Transform (FFT) method to compute VaR. Once we know the characteristic function of natural logarithm of the underlying asset price, we are able to compute VaR by FFT method. This is very powerful because the characteristic function can be computed easily in a lot of models. Using FFT method to compute VaR can efficiently reduce the computational time without losing the accuracy. In order to check the accuracy, we would like to analyze the bound of error between the true value and the numerical computation.

    Table of Contents 1 Chapter 1 Introduction 3 Chapter 2 Modified Fourier Transform Method for Volatility Estimation 5 2.1 Fourier Series 5 2.2 Fourier Transform Method 6 2.3 Modified Fourier Transform Method – Beas Reduction 7 Chapter 3 Stochastic Volatility Model 9 3.1 Heston Model ( CIR Process ) 9 3.2 Parameter Estimation 10 Chapter 4 Apply Fast Fourier Transform method to VaR Estimation 12 4.1 Introduction of Fast Fourier Transform 12 4.2 From Characteristic Functions to VaR/CVaR Estimation 13 4.3 Evaluation of VaR by FFT Method 17 Chapter 5 Bounds for Sampling and Truncation Errors 19 5.1 Truncation Error 20 5.2 Sampling Error 20 5.3 Bound of Total Error 23 Chapter 6 Empirical Studies 25 6.1 Dataset with different time period 25 6.2 Introduction of the two methods 25 6.3 Introduction of Backtesting 26 6.4 Empirical Results 28 Chapter 7 Conclusion 37 Appendix 38 Reference 44

    [1] C.-H. Han, W.-H. Liu, and T.-Y. Chen. (2011). An Improved Procedure for VaR/CVaR Estimation under Stochastic Volatility Models. Submitted.
    [2] C. Broto and E. Ruiz. (2004). Estimation methods for stochastic volatility models: A survey. Journal of Economic Surveys 18(5), 613-649.
    [3] J. C. Hull. (2008). Options, Futures, and Other Derivatives. Seventh Edition. Prentice Hall.
    [4] J. C. Hull. (2010). Risk Management and Financial Institutions. 2nd Edition. Prentice Hall.
    [5] P. Malliavin and M. E. Mancino. (2002). Fourier series method for measurement of multivariate volatilities. Finance and Stochastics. 6, 49-61.
    [6] P. Carr and D. Madan. (1999). Option Valuation Using the Fast Fourier Transform. Journal of Computational Finance.
    [7] P. Malliavin and M. E. Mancino. (2009). A Fourier Transform Method for Nonparametric Estimation of Multivariate Volatilities, The Annals of Statistics, 37, 1983-2010.
    [8] R. Reno. (2008). Nonparametric estimation of the diffusion coefficient of stochastic volatility models. Econometric Theory. 24(5), 1174-1206
    [9] U. Cherubini, G. Della Lunga, S. Mulinacci, and P. Rossi. (2010). Fourier Transform Methods in Finance. Wiley Finance.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE