研究生: |
馬敖藍 Orlando Jesus Marin Artavia |
---|---|
論文名稱: |
Nanofilm Instability Induced by Solvent Vapor of Polystyrene Doped with the Conjugated Polymer MEH-PPV: the Competition of Phase Separation and Dewetting |
指導教授: |
楊長謀
Yang, C.M. |
口試委員: |
黃華宗
Whang, Wha-Tzong 歐陽浩 Ouyang, Hao |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 144 |
中文關鍵詞: | 不穩定 、相分離 、MEH-PPV 、聚苯乙烯 、去濕 |
外文關鍵詞: | Instability, Phase separation, MEH-PPV, Polystyrene, Dewetting |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Nanothin films of polystyrene (PS) doped with poly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) by spin-coating were researched. An Interplay between phase separation and dewetting caused by the inhibition of formation of holes with increasing concentration of MEH-PPV in polystyrene was observed in the early stages of instability. With increasing concentration of MEH-PPV, the morphology is dominated by this interplay. For low concentrations of 5%-MEH-PPV, dewetting by nucleation and growth was found as evidenced by the formation of holes with rim instability, after increasing the concentration to 15%-MEH-PPV, there was no formation of holes but rather the appearance of composition waves and later formation of droplets; with a higher concentration of 30%-MEH-PPV the surface morphology evidenced the formation of composition waves rather than the formation of holes. Under the same film thickness, composition waves are induced with increasing concentration of MEH-PPV. A short-time stepwise annealing experiment exposed the evolution of the morphological features. A residual layer measured on scratched samples by the AFM was found to be thicker for a larger concentration of MEH-PPV. The effect of film thickness was analyzed for films of 5, 10, 20 and 30 nm revealing that increasing film thickness benefits the formation of the composition waves as evidenced by the early rising of the bicontinuous pattern. For concentrations of 15%-MEH-PPV and above, The PL enhancement factor was found to decrease with film thickness revealing that the PL enhancement decreases progressively with increasing film thickness as the films move from higher instability to the formation of the composition waves. The solvent effect showed that acetone usually had a different path of instability than toluene.
1-Jacobs, K.; Herminghaus, S., Langmuir, 1998, 14, 965-969.
2-Karim, A.; Douglas, J.F.; Sung, L.P.; Ermi, D.B., Encyclopedia of Materials: Science and Technology, 2001, 8319-8322.
3-Arnatov, S.A.; Nechvolodova, S.A.; Bakulin, A.A.; Elizarov, S.G.; Khodarev, A.N.; Martyanov, D.S.; Parashuk, D.Y., Synthetic Metals, 147,2004, 287–291.
4-Thompson, R.L.; McDonald, M.T.; Lenthall, J.T.; Hutching, L.R., Macromolecules, 2005, 38, 4339-4344.
5-Lee, W.H.; Kim, K.S.; Yang, G. M.; Hong, C.H.; Lim, K.Y.; Suh, E.Y.; Lee, H.J., J. Korean Phys. Soc., 2001, 39, 136-140.
6-Park, J.H.; Kim, J.S.; Lee, J.H.; Lee, W.H.; Cho, K., J. Phys. Chem. C, 2009, 113, 17579–17584.
7-Fu, Y.; Lakowicz, J., Nature, 2011, 472, 178-179.
8-Xu, L.; Shi, T.F.; An, L.J., Langmuir, 2007, 23, 9282-9286.
9-Reiter, G.; Sharma, A.; Casoli, A.; David, M.A.; Khanna R.; Philippe, A., Langmuir, 1999, 15, 2551-2558, 1999.
10-Ruderer, M.A.; Metwalli, E.; Wang, W.N.; Kaune, G.; Roth, S.V.; Müller-Buschbaum, P., J. Chem. Phys., 2009, 10, 664 – 671.
11-Oron, A.; Davis, S.H.; Bankoff, G.S., Rev. Modern Phys., 1997, 69, 3, 931-980.
12-Vrij, A., Discussions of the Faraday Society, 44, 1966, 23-33.
13-Reiter, G.; Sharma, A., J. Colloid & Interface SCI., 1996,178, 383–399.
14-Nishi, T.; Wang, T.T.; Kwei, T.K., Macromolecules, 1975, 8, 2, 227-234.
15-Breeze, A.J.; Schlesinger, Z.; Carter, S.A., Phys. Rev. B, 2001, 64, 125205.
16-Roger F. Loring, R.F.; Andersen, H.C.; Fayer, M.D., J. Chem. Phys., 1982, 76, 2015-2017
17-Batchelor, G.K., J. Fluid Mech., 1976, 74, part 1, 1-29.
18-Sagui, C.; Grant, M., Phys. Rev. E, 1999, 59, 4, 4175-4187.
19-Zhang, F.L.; Mammo, W.; Andersson, L.M.; Admasie, S.; Mats R. Andersson, M.R.; Inganäs, O., Adv. Mater., 2006, 18, 2169–2173.
20-Karim, A.; Douglas, J.F.; Lee, B.P.; Glotzer, S.C.; Rogers, J.A.; Jackman, R.J.; Amis, E.J.; Whitesides, G.M., Phys. Rev. E, 1998, 57, 6, R6273-6.
21-Roger F. Loring, R.F.; Andersen, H.C.; Fayer, M.D., J. Chem. Phys., 1982, 76, 2015-2017.
22-Sferrazza, M.; Heppenstall-Butler, M.; Cubitt, M.R.; Bucknall, D.; Webster, J.; Jones, R.A.L. Phys. Rev. Lett., 1998, 81, 23
23-Heier, J.; Castro, F.A.; Nüesch, F.; Hany, R.; Org. Photovoltaics VIII, 2007, Proc. of SPIE Vol. 6656 66560P-1.
24-Chou, L.H.; Hsu, S.Y.; Wei, P.K., Polymer, 2005, 46, 4967–4970.
25-Mokarian-Tabari, P.; M. Geoghegan, M.; Howse, J.R.; Heriot, S.Y.; Thompson, R.L.; Jones, R.A.L., Eur. Phys. J. E, 2010, 33, 283–289.
26-Castro, F.A.; Graeff, C.F.O.; Heier, J.; Hany, R., Polymer, 2007, 48, 2380-2386.
27-Wu, S.H., Polymer Interface and Adhesion, 1982, CRC Press, 1st Ed.
28-Li, X.; Han, Y.C.; An, L.J., Polymer, 2003, 44, 5833–5841.
29-Lai, A.; Bremond, N.; Stone, H.A., J. Fluid Mech., 2009, 632, 97–107. Droplets.
30-Shi, Y.; Liu, J.; Yang, Y., J. Appl. Phys., 2000, 87, 9, 4254-4263.
31-Gabriele, S.; Reiter, G.; Hamieh, M.; Damman, P.; Sclavons, S.; Vilmnon, T.; Raphael, Deprez, S.; Coppee, S.; Al Akhrass, S.; Vilmin, T., J. Pol. Sci.: Part B: Pol. Phys., 2006, 44, 3022–3030 .
32-Barnes, K.A.; Douglas, J.F.; Liu, D.W.; Karim, A., Adv. Colloid & Interface Sci., 2001, 94, 1 – 3, 83 – 104.
33-Gonzalez-Rabade, A.; Mortenai, A.C.; Friend, R.H., Adv. Mater., 2009, 21, 3924–3927.
34-Schwatz, L.W.; Valery Roy, R.; Eley, R.R.; Petrash, S., J. Colloid & Interface Sci., 2001, 234, 363–374.
35-Reiter, G., Phys. Rev. Lett., 1992, 68, 1, 75-78.
36-Xing, R.B.; Lio, C.X.; Wang, Z.; Han, Z.Y., Polymer, 2007, 48, 3574-3583.
37-Reiter, G.; Hamieh, M.; Damman, P.; Sclavons, S.; Gabriele, S.; Vilmnon, T.; Raphael, E., Nature Materials, 2005, 4.
38-Al Akhrass, S.; Ostaci, R.V.; Grohens, Y.; Drockenmuller, E.; Reiter, G., Langmuir 2008, 24, 1884-1890.
39-Xu, L.; Reiter, G.; Shi, T.F.; An, L.J., Langmuir, 2010, 26, 10, 7270–7276.
40-Mecke, R.K.; Jacobs, K.; Herminghaus. S., Langmuir, 1998, 14, 965-969.
41-Derjaguin, B.V.; Abrikosova, I.I.; Lifshitz, E.M., Quarterly Reviews, 1956.
42-Thennadil, S.N.; Garcia-Rubio, L.H., J. Colloid & Interface Sci., 2001, 243, 136-142.
43-Lifshitz, E.M., J Exp. Theor. Phys., 1955, 29, 94.
44-Lifshitz, E.M., Soviet Phys., 1956, 2, 1, 73-83.
45-Hamaker H.C., Physica, 1937, 10.
46-French, R.H., Solid State Ionics, 75, 13-33, 1995.
47-Drummond C.H., Langmuir, 1997, 13, 3890-3895.
48-Van Oss, C.J., J. Appl. Phys., 1981, 52, 2.
49-Sariciftci, N.S.; Smilowitz, L.; Heeger, A.J.; Wudl, F., 1992, SCI., 258, 27, 1474-1476.
50-Ayse Turak (2013). Dewetting Stability of ITO Surfaces in Organic Optoelectronic Devices, Optoelectronics - Advanced Materials and Devices, Prof. Sergei Pyshkin (Ed.).
51-Xie, R.; Karim, A.; Douglas, J.F.; Han, C.C.; Weiss, R.A., Phys. Rev. Lett, 1998, 81, 6, 1251-1255.
52-Siggia, E., Phys. Rev. A., 1979, 20, 2, 595-606.
53-Thiele, U.; Velarde, M.G.; Neuffer, K., Phys. Rev. Lett., 2001, 87, 1, 016104-1-4.
54-Swalin, R.A., Thermodynamics of Solids, 1972, John Wiley & sons, 2nd Ed.
55-Tekin, E.; Holder, E.; Kozodaev, D., Schubert, U., Adv. Func. Mat., 2007, 17, 277–284.
56-Wang, D.P.; Yuan, Y.; Mardiyati, Y.; Bubeck, C.; Koynov, K., Macromolecules, 2013, 46, 15,6217–6224.
57-Brandrup J., Polym. Handbook, 3rd edition, 1989.
58-Koenhen, D.M.; Smolders, A., J. App. Pol. Sci., 1975, 19, 1163-1179.
59-Lee, S.H.; Yoo, P.J.; Kwon, S.J.; Hong H. Lee, H.H., J. Chem. Phys., 121, 4346, 2004.
60-Heriot, S.Y.; Jones, R.L., 2005, Nature Materials, 4.
61-Szymanski, C.; Wu, C.F.; Hooper, J.; Salazar, M.A.; Perdomo, A.; Dukes, A.; McNeill, J., J. Phys. Chem. B., 2005, 109, 8543-8546.
62-Cossiello, R.F.; Susman, M.D.; Aramendía, P.F.; Atvars, T.D.Z., J. Luminescence, 2010, 130, 415–423.
63-Ton-That, C.; R. Phillips, M.R.; Nguyen, T.P., J. Luminescence, 2008, 128, 2031–2034.
64-Müller-Buschbaum, P., O’Neill, S.A.; Affrossman, S.; Stamm, M., Macromolecules, 1998, 31, 5003-5009.
65-Ma, K.X.; Ho, C.H.; Zhu, F.R.; Chung, T.S., Thin Solid Films, 2000, 371, 140-147.
66-Wu. S., J Poly Sci., 1971, C34, 19.
67-Müller-Buschbaum, P.; Gutmann, J.S.; Stamm, M., Macromolecules, 2000, 33, 4886-4895.
68-Xu, L.; Sharma, A.; Joo, S.W., Macromolecules, 2012, 45, 6628−6633.
69-He, G.F.; Li, Y.F.; Liu, J.; Yang, Y., App. Phys. Lett., 2002, 80, 22, 4247-4249.
70-Zhu, J.T; Zhao, J.C.; Liao, Y.G.; Jiang, W., J. Pol. Sci.: B: Pol. Phys., 2005, 43, 2874–2884.
71-Müller-Bunschbaum, P.; Bauer, P.; Wunnicke, O.; Stamm, M., J. Phys.: Condens. Matter, 2005, 17, S363–S38.
72-Seemann, R.; Herminghaus, S.; Jacobs, K., J. Phys.: Condens. Matter, 2001, 13, 4925–493.
73-Seeman, R.; Herminghaus, S.; Jacobs, K., Phys. Rev. Lett., 2001, 86, 24, 5534-5537.
74-Marletta, A., Gonsalves, V.; T. Balogh, D.T., Braz. J. Phys., 2004, 34, 2B, 697-698.
75-Israelivich., Intermolecular and Surface Forces, 3rd Ed., Chap. 13, 2011.
76-Granström, M.; Inganäs, O., Appl. Phys. Lett., 1996, 68, 2, 147-149.
77-Chang, M.Y.; Yen, H.B.; Hung, C.Y.; Chen, Y.F.; Lin, S.C.; Huang, W.Y.; Han, Y.K., J. Electrochem. Soc., 2010, 157, 4, J116-J119.
78-Olson, L.G.; Lo, Y.S.; Beebe, T.P.; M. Harris, J.M., Anal. Chem. 2001, 73, 4268-4276. A
79-Nowicki, B., Wear, 1985, 102, 161 – 176. b
80-Sung, L.; Karim, A.; Douglas, J.F.; Han, C.C., Phys. Rev. Lett, 1996, 76, 4368. C
81-Xue, L.J.; Han, Y.C., Langmuir, 2009, 25, 9, 5135–5140.
82-Vial, J.; Carr. A., INT.J. Adhesion & Adhesives, 1991, 11, 3.
83-Changsarn, S.; Mendez, J.D.; Weder, C.; Toemsak Srikhirin, T.; Supaphol, P., Chiang Mai J. Sci., 2011, 38, 2, 193-209.
84-Lefèvre, G.; Jolivet, A., Proc. Int. Conference on Heat Exchanger Fouling and Cleaning VIII, 2009.
85-Butt, H.J.; Graff, K.; Kappl, M., Physics and Chemistry of Interfaces, 2006, Wiley-VCH Verlag & Co. KGaA
86-Van Oss, C.J., Interfacial forces in aqueous media, 2006, CRC Taylor & Francis Group, 2nd Ed.
87-French, R.H.; Cannon, R.M.; DeNoyer, L.K.; Chiang, Y.M., Solid State Ionics, 1996, 75, 13-33.
88-Saunders, B.R.; Turner, M.L., Advances in Colloid and Interface Science, 2008, 138, 1–23.
89-Chou, H.L.; Lin, K.F.; Wang, D.C., J. Pol. Res., 2006, 13, 79–84.
90-You, J.C.; Liao, Y.G.; Men, Y.F.; Shi, T.F.; An, L.J., Langmuir, 2010, 26, 18, 14530–14534.
91-Kim, C.G.; Koo, M.S.; Choi, S.H.; Lee, D.H.; Park, D.K., Bull. Korean Chem. Soc., 2012, 33, 9, 3087-3090.
92-Reiter, G.; Napolitano, S., J. Pol. Sci.: B: Poly. Phys., 2010, 48, 2544–2547.
93-Yao, Y.; Hou, J.H.; Xu, Z.; Li, G.; Yang, Y.; Adv. Funct. Mater. 2008, 18, 1783–1789.
94-Zhu, M.; Cui, T.H.; Varahramyan, K., Microelectronic Engineering, 2004, 75, 269–274.
95-Utraki, L.A; Jamieson, A.M., Polymer Physics, from suspensions to nanocomposites and beyond, 2010, John Wiley & Sons, Inc. Publications, 1st Ed.
96-Wang. H.; Composto, R., J. Chem. Phys., 2000, 113, 10386.
97-Faleiros, M.M.; Miranda, P.B., Synthetic Materials, 2010, 160, 2409-2412.