研究生: |
吳哲維 Wu, Che-Wei |
---|---|
論文名稱: |
以相位對比磁共振影像評估超音波輻射力之影響 Evaluation of Acoustic Radiation Force by Phase-Contrast Magnetic Resonance Imaging |
指導教授: |
彭旭霞
Peng, Hsu-Hsia |
口試委員: |
鍾孝文
Chung, Hsiao-Wen 劉浩澧 Liu, Hao-Li 葉秩光 Yeh, Chih-Kuang |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 92 |
中文關鍵詞: | 超音波輻射力 、相位對比磁振造影 、微氣泡 |
外文關鍵詞: | radiationforce, PC-MRI, microbubble |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,藉由聚焦式超音波之輻射力聚集之微氣泡是為人所知的藥物傳遞機制. 對於在動物中定位聚集之氣泡及計算該氣泡之聚集程度為一重要議題.此研究之目標即為藉由相位對比磁振造影觀察因超音波輻射力聚集之氣泡造成的流場變化,進而找出其位置同時測量該氣泡大.在仿體實驗中,分別以橫切面與縱切面來顯示不同的流體資訊。此外,此研究同時也展示了活體實驗的可行性。超音波輻射力會將微氣泡聚集而縮窄管徑進一步造成流體的改變。因此為維持氣泡聚集處的流量,會造成流速上升。 此外在氣泡聚集處也會發現有流場轉動之情形。這些結果皆提供了以相位對比磁振造影技術評估超音波輻射力之可行性. 再者,在活體中也有執行與仿體相似的實驗並也獲得流速上升且血流有轉動之結果。此研究之概念將提供一個新的方法觀察於較深層之血管之評估超音波輻射力進而希望提供超音波輻射力在藥物傳遞上有新的應用。
Gas-filled microbubbles (MB) aggregated by acoustic radiation force (ARF) with focused ultrasound (FUS) is a well-known mechanism of drug delivery. It is an important issue to localize the aggregated bubbles and evaluate their size in the animals. However, the optical microscope was limited depth and the ultrasound image constricted to the resolution of soft tissue, such as vessel wall. The aim of this study was to observe MR SI change caused by ARF-induced aggregation by phase-contrast MRI, using the MR SI change to localize the aggregated bubbles and evaluate their size simultaneously in the vessel.
In in vitro experiment, different MB concentrations, acoustic pressures and flow velocities performed in axial view and different MB concentrations tested in sagittal view. Further, in vivo experiment tested in this study to show the feasibility of aggregating MBs by ARF in the vessel.
Acoustic radiation force aggregated MB to narrow down the chamber and cause the flow change. The flow velocity increased to maintain the flow rate at the focal plane. Rotated velocity vectors and formation of centripetal force could be found near the position of aggregated bubble. In addition, the high velocity center shifted due to the aggregations. These findings indicated the capability of quantitating ARF-induced bubble by PC-MRI. Moreover, the feasibility of in vivo experiment was also conducted. The change of velocity, vorticity and centripetal force were found in in vivo experiment.
The concept of this study could be useful to evaluate the ARF-induced aggregation in the deeper vessel in body. Thus, this could develop the innovative application of ARF-induced drug delivery.
1. Masuda K, Shigehara N, Koda R, Watarai N, Ikeda S, Arai F, Miyamoto Y, Chiba T. Observation of flow variation in capillaries of artificial blood vessel by producing microbubble aggregations. Conf Proc IEEE Eng Med Biol Soc 2012;2012:2064-2067.
2. Hou M, Chen C, Tang D, Luo S, Yang F, Gu N. Magnetic microbubble-mediated ultrasound-MRI registration based on robust optical flow model. Biomed Eng Online 2015;14 Suppl 1:S14.
3. Ting C-Y, Fan C-H, Liu H-L, Huang C-Y, Hsieh H-Y, Yen T-C, Wei K-C, Yeh C-K. Concurrent blood–brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment. Biomaterials 2012;33(2):704-712.
4. Yang F, Li L, Li Y, Chen Z, Wu J, Gu N. Superparamagnetic nanoparticle-inclusion microbubbles for ultrasound contrast agents. Phys Med Biol 2008;53(21):6129-6141.
5. Chappell JC, Song J, Klibanov AL, Price RJ. Ultrasonic microbubble destruction stimulates therapeutic arteriogenesis via the CD18-dependent recruitment of bone marrow–derived cells. Arteriosclerosis, thrombosis, and vascular biology 2008;28(6):1117-1122.
6. Juffermans L, van Wamel A, Henning R, Kooiman K, Emmer M, de Jong N, van Gilst W, Musters R, Paulus W, van Rossum A. Ultrasound and microbubble-targeted delivery of therapeutic compounds. Netherlands Heart Journal 2009;17(2):82-86.
7. Liu H-L, Fan C-H, Ting C-Y, Yeh C-K. Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview. Theranostics 2014;4(4):432.
8. Yeh C-K. Ultrasound microbubble contrast agents for diagnostic and therapeutic applications: current status and future design. Chang Gung Med J 2012;35(2).
9. Liu HL, Fan CH, Ting CY, Yeh CK. Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview. Theranostics 2014;4(4):432-444.
10. Dayton PA, Morgan KE, Klibanov ALS, Brandenburger G, Nightingale KR, Ferrara KW. A preliminary evaluation of the effects of primary and secondary radiation forces on acoustic contrast agents. Ieee T Ultrason Ferr 1997;44(6):1264-1277.
11. Dayton PA, Allen JS, Ferrara KW. The magnitude of radiation force on ultrasound contrast agents. J Acoust Soc Am 2002;112(5 Pt 1):2183-2192.
12. Dayton P, Klibanov A, Brandenburger G, Ferrara K. Acoustic radiation force in vivo: a mechanism to assist targeting of microbubbles. Ultrasound Med Biol 1999;25(8):1195-1201.
13. Klibanov AL, Hughes MS, Marsh JN, Hall CS, Miller JG, Wible JH, Brandenburger GH. Targeting of ultrasound contrast material. An in vitro feasibility study. Acta Radiol Suppl 1997;412:113-120.
14. Zheng XY, Apfel RE. Acoustic Interaction Forces between 2 Fluid Spheres in an Acoustic Field. Journal of the Acoustical Society of America 1995;97(4):2218-2226.
15. Morgan K, Dayton P, Klibanov S, Brandenburger G, Kaul S, Wei K, Ferrara K. Properties of contrast agents insonified at frequencies above 10 MHz. 1996 Ieee Ultrasonics Symposium, Proceedings, Vols 1 and 2 1996:1127-1130.
16. Wang S, Hossack JA, Klibanov AL, Mauldin FW, Jr. Binding dynamics of targeted microbubbles in response to modulated acoustic radiation force. Phys Med Biol 2014;59(2):465-484.
17. Chuang YH, Cheng PW, Li PC. Combining radiation force with cavitation for enhanced sonothrombolysis. IEEE Trans Ultrason Ferroelectr Freq Control 2013;60(1):97-104.
18. Kooiman K, Vos HJ, Versluis M, de Jong N. Acoustic behavior of microbubbles and implications for drug delivery. Adv Drug Deliv Rev 2014;72:28-48.
19. Masuda K, Nakamoto R, Watarai N, Koda R, Taguchi Y, Kozuka T, Miyamoto Y, Kakimoto T, Enosawa S, Chiba T. Effect of Existence of Red Blood Cells in Trapping Performance of Microbubbles by Acoustic Radiation Force. Japanese Journal of Applied Physics 2011;50(7).
20. Meairs S, Alonso A, Hennerici MG. Progress in sonothrombolysis for the treatment of stroke. Stroke 2012;43(6):1706-1710.
21. Maxwell AD, Cain CA, Duryea AP, Yuan L, Gurm HS, Xu Z. Noninvasive thrombolysis using pulsed ultrasound cavitation therapy - histotripsy. Ultrasound Med Biol 2009;35(12):1982-1994.
22. Xie F, Lof J, Everbach C, He A, Bennett RM, Matsunaga T, Johanning J, Porter TR. Treatment of acute intravascular thrombi with diagnostic ultrasound and intravenous microbubbles. JACC Cardiovascular imaging 2009;2(4):511-518.
23. Kutty S, Wu J, Hammel JM, Xie F, Gao S, Drvol LK, Lof J, Radio SJ, Therrien SL, Danford DA, Porter TR. Microbubble mediated thrombus dissolution with diagnostic ultrasound for the treatment of chronic venous thrombi. PLoS One 2012;7(12):e51453.
24. Lu Y, Wang J, Huang R, Chen G, Zhong L, Shen S, Zhang C, Li X, Cao S, Liao W, Liao Y, Bin J. Microbubble-Mediated Sonothrombolysis Improves Outcome After Thrombotic Microembolism-Induced Acute Ischemic Stroke. Stroke 2016;47(5):1344-1353.
25. Maxwell AD, Owens G, Gurm HS, Ives K, Myers DD, Jr., Xu Z. Noninvasive treatment of deep venous thrombosis using pulsed ultrasound cavitation therapy (histotripsy) in a porcine model. Journal of vascular and interventional radiology : JVIR 2011;22(3):369-377.
26. Zhang X, Miller RM, Lin KW, Levin AM, Owens GE, Gurm HS, Cain CA, Xu Z. Real-time feedback of histotripsy thrombolysis using bubble-induced color Doppler. Ultrasound Med Biol 2015;41(5):1386-1401.
27. Thoroddsen S, Etoh T, Takehara K. High-speed imaging of drops and bubbles. Annu Rev Fluid Mech 2008;40:257-285.
28. Bloch SH, Wan M, Dayton PA, Ferrara KW. Optical observation of lipid-and polymer-shelled ultrasound microbubble contrast agents. Applied physics letters 2004;84(4):631-633.
29. Cheung JS, Chow AM, Guo H, Wu EX. Microbubbles as a novel contrast agent for brain MRI. Neuroimage 2009;46(3):658-664.
30. Wong KK, Huang I, Kim YR, Tang H, Yang ES, Kwong KK, Wu EX. In vivo study of microbubbles as an MR susceptibility contrast agent. Magnetic resonance in medicine 2004;52(3):445-452.
31. Alexander AL, McCreery TT, Barrette TR, Gmitro AF, Unger EC. Microbubbles as novel pressure‐sensitive MR contrast agents. Magnetic resonance in medicine 1996;35(6):801-806.
32. Nightingale K, Soo MS, Nightingale R, Trahey G. Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound Med Biol 2002;28(2):227-235.
33. Zhang YF, Xu HX, He Y, Liu C, Guo LH, Liu LN, Xu JM. Virtual touch tissue quantification of acoustic radiation force impulse: a new ultrasound elastic imaging in the diagnosis of thyroid nodules. PLoS One 2012;7(11):e49094.
34. Klibanov AL, Hughes MS, Villanueva FS, Jankowski RJ, Wagner WR, Wojdyla JK, Wible JH, Brandenburger GH. Targeting and ultrasound imaging of microbubble-based contrast agents. MAGMA 1999;8(3):177-184.
35. Dayton PA, Morgan KE, Klibanov AL, Brandenburger GH, Ferrara KW. Optical and acoustical observations of the effects of ultrasound on contrast agents. IEEE Trans Ultrason Ferroelectr Freq Control 1999;46(1):220-232.
36. Peng HH, Wu CH, Kang ST, Zhang JW, Liu HL, Chen WS, Wang CH, Yeh CK. Real‐time monitoring of inertial cavitation effects of microbubbles by using MRI: In vitro experiments. Magnetic resonance in medicine 2015.
37. Fan C-H, Liu H-L, Huang C-Y, Ma Y-J, Yen T-C, Yeh C-K. Detection of intracerebral hemorrhage and transient blood-supply shortage in focused-ultrasound-induced blood–brain barrier disruption by ultrasound imaging. Ultrasound in medicine & biology 2012;38(8):1372-1382.
38. Kang S-T, Yeh C-K. A maleimide-based in-vitro model for ultrasound targeted imaging. Ultrasonics sonochemistry 2011;18(1):327-333.
39. H K Moffatt a, Tsinober A. Helicity in Laminar and Turbulent Flow. Annual Review of Fluid Mechanics 1992;24(1):281-312.
40. Owen J, Pankhurst Q, Stride E. Magnetic targeting and ultrasound mediated drug delivery: benefits, limitations and combination. Int J Hyperthermia 2012;28(4):362-373.
41. Mullin LB, Phillips LC, Dayton PA. Nanoparticle delivery enhancement with acoustically activated microbubbles. IEEE Trans Ultrason Ferroelectr Freq Control 2013;60(1):65-77.
42. Rychak JJ, Klibanov AL, Hossack JA. Acoustic radiation force enhances targeted delivery of ultrasound contrast microbubbles: In vitro verification. Ieee T Ultrason Ferr 2005;52(3):421-433.
43. Nie LZ, Harput S, McLaughlan JR, Cowell DMJ, Carpenter T, Freear S. Acoustic Microbubble Trapping in Blood Mimicking Fluid. Ieee Int Ultra Sym 2017.
44. Harput S, Nie L, Cowell DMJ, Carpenter T, Raiton B, McLaughlan J, Freear S. Simultaneous Trapping and Imaging of Microbubbles at Clinically Relevant Flow Rates. 2016 Ieee International Ultrasonics Symposium (Ius) 2016.
45. Shi WT, Forsberg F, Tornes A, Ostensen J, Goldberg BB. Destruction of contrast microbubbles and the association with inertial cavitation. Ultrasound Med Biol 2000;26(6):1009-1019.
46. Saharkhiz N, Zademodares S, Salehpour S, Hosseini S, Nazari L, Tehrani HG. The effect of testosterone gel on fertility outcomes in women with a poor response in in vitro fertilization cycles: A pilot randomized clinical trial. Journal of research in medical sciences : the official journal of Isfahan University of Medical Sciences 2018;23:3.
47. Liu HC, Li Y, Chen R, Jung H, Shung KK. Single-Beam Acoustic Trapping of Red Blood Cells and Polystyrene Microspheres in Flowing Red Blood Cell Saline and Plasma Suspensions. Ultrasound Med Biol 2017;43(4):852-859.
48. Patil AV, Rychak JJ, Klibanov AL, Hossack JA. Real-Time Technique for Improving Molecular Imaging and Guiding Drug Delivery in Large Blood Vessels: In Vitro and Ex Vivo Results. Mol Imaging 2011;10(4):238-247.
49. Patil AV, Rychak JJ, Klibanov AL, Hossack JA. Enhancement of static signal in large vessels using composite dual frequency pulses. Ultrason 2008:1100-+.
50. Vik A, Brubakk AO, Hennessy TR, Jenssen BM, Ekker M, Slordahl SA. Venous air embolism in swine: transport of gas bubbles through the pulmonary circulation. J Appl Physiol (1985) 1990;69(1):237-244.
51. Butler BD, Robinson R, Sutton T, Kemper GB. Cardiovascular pressures with venous gas embolism and decompression. Aviat Space Environ Med 1995;66(5):408-414.
52. Boussuges A, Blanc F, Carturan D. Hemodynamic changes induced by recreational scuba diving. Chest 2006;129(5):1337-1343.
53. Butler BD, Robinson R, Little T, Chelly JE, Doursout MF. Cardiopulmonary changes with moderate decompression in rats. Undersea Hyperb Med 1996;23(2):83-89.