研究生: |
吳承翰 Cheng-Han Wu |
---|---|
論文名稱: |
轉向壓印微影技術於有機薄膜電晶體上之應用 Reversal Imprint Lithography Technology for Organic Thin Film Transistor Applications |
指導教授: |
連振炘
Chen-Hsin Lien |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 56 |
中文關鍵詞: | 轉向壓印 、有機薄膜電晶體 、P3HT |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本論文將轉向微影壓印技術應用於有機薄膜電晶體的製程中,首先濺鍍下電極,接著沈積parylene C作為介電層,旋塗P3HT作為有機半導體層,最後以轉向壓印的方法將模具上的汲極源極金屬圖樣黏附於P3HT層上,並討論模具及基底的處理,與各種製程條件對壓印結果產生的影響。
由實驗結果得知,在汲極源極金電極與P3HT層之間以鈦作為黏著層,可提高壓印效果。此外在模具上預先蒸鍍F13TCS(脫膜劑)以及對P3HT層做O2 plasma 處理皆可增加壓印圖樣的完整度。本實驗中,可以利用傳統微影製程製作而成的模具,成功地藉由壓印的方式將電晶體通道長度縮小至2μm。
在電晶體特性方面,由於氧氣會使得P3HT的摻雜濃度上升,致使其導電度增加,所以經過O2 plasma處理的樣本漏電流約為1.3×10-10A/um,且電流-電壓特性接近一線性電阻。在去除O2 plasma處理步驟,同時因配合P3HT操作溫度而降低壓印溫度後,漏電流可降到1.2×10-12A/um以下,臨界電壓(Vth)約為20V,載子遷移率為2.2×10-4cm2/V-s,Ion/Ioff比約為1000,且特性曲線有明顯改善,但在此操作條件下會使得壓印圖樣良率降低。
Abstract
In this thesis, we apply reversal imprint technology into the fabrication process of organic thin-film-transistor. First, we sputter bottom gate metal on Si wafer, then evaporate parylene C as dielectric layer and spin coating P3HT as organic active layer. Finally, define S/D pattern by imprint metal on P3HT layer. We will discuss the factors that influence imprint results, including surface treatment, and parameters of the imprint process.
As the result of this experiment, sputtering Ti as adhesion layer between S/D gold contact and P3HT layer can improve imprint result. Also, pre-coating F13TCS on mold and O2 plasma treatment on P3HT layer can improve the imprint yield, too. At last, we can scale down the channel length to 2um by the mold that made with traditional lithography technology.
Because O2 will induce raise of P3HT doping concentration and increase the conductivity, transistors on the sample with O2 plasma have leakage current about 1.3×10-10A/um, and Id-Vd characteristics is nearly like a resistor. As we take off the O2 plasma process and reduce the imprint temperature due to match up operation temperature of P3HT, the leakage current can cut down to 1.2×10-12A/um, and Vth is about 20V;mobility is 2.2×10-4cm2/V-s and Ion/Ioff ratio is 1000. Also, the Id-Vd characteristics is obviously improved. But under this imprint condition, the yield of imprint pattern is poor.
參考文獻
[1] X. D. Huang, L.-R. Bao, X. Cheng, L. J. Guo, S. W. Pang, and A. F. Yee, “Reversal imprinting by transferring polymer from mold to substrate”, Journal Vacuum Science Technology B, Vol.20(6), pp. 2872-2876, 2002.
[2] G□nter Schmid, Hagen Klauk, Marcus Halik, Ute Zschieschang, Florian Eder and Christine Dehm, “Polymer Electronics”, mstnews S/03, pp. 19-20, 2003.
[3] Guangming Wang, James Swensen, Daniel Moses, and Alan J. Heeger, Journal of applied physics, 93(10), 2003.
[4] ITRS, International Technology Roadmap for semiconductors Conference.
[5] C. M. Sotomayor Torres, S. Zankovych, J. Seekamp, A. P. Kam, C. Clavijo Cede□o, T. Hoffmann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiessel et al., “Nanoimprint lithography: an alternative nanofabrication approach, Materials”, Science and Engineering: C, Vol. 23, Issues 1-2, pp. 23-31, 15 JAN 2003.
[6] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, “Nanoimprint lithography”, Journal Vacuum Science Technology B, Vol.14(6), pp. 4129-4133, 1996.
[7] H. C. Scheer, H Schulz, T, Hoffman, and C. M. Sotomayor Torres, J. Vac. Sci. Technol. 16, 3917(1998).
[8] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt, C. G. Willson, Proc. of SPIE 3676 379(1999).
[9] Y. Xia, G. M. Whitesides, Angew. Chem. Int., 37, 500(1998).
[10] X. D. Huang, L. R. Bao, X. Cheng, L. J. Guo, S. W. Pang, and A. F. Yee, J. Vac. Sci. Technol. B 20, 2872(2002).
[11] L. R. Bao, X. Cheng, X. D. Huang, L. J. Guo, S. W. Pang, and A. F. Yee, J. Vac. Sci. Technol. B 20, 2881(2002).
[12] Y. Y. Lin, D. J. Gundlach, S. Nelson, T. N. Lett., 18, 606, 1997
[13] G. Horowitz, X. Peng, D. Fichou, F. Garnier, Synth. Met. 51, 419, 1992.
[14] A. Dodabalapur, L. Torsi, H. E. Katz, Science 1995, 268, 270.
L. Torsi, A. Dodabalapur, A. J. Lovinger, H. E. Katz, R. Ruel, D. D. Davis, K. W. Baldwin, Chem. Master. 7, 2247, 1995.
[15] H. E. Katz, L. Torsi, A. Dodabalapur, Chem. Master. 7, 2235, 1995.
[16] R. Hajlaoui, G. Horowitz, F. Garnier, A. Arce-Brouchet, L. Laigre, A. Elkassmi, F. Demanze, F. Kouki, Adv. Mater. 9, 389, 1997.
[17] Z. Bao, A. J. Lovinger, J. Brown, J. Am. Chem. Soc. 1998, 120, 207.
[18] H. Fuchigami, A. Tsumura, H. Koezuka, Appl. Phys. Lett. 63, 1993 1372.
[19] S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, CH.7, 1981.
[20] A. R. Brown, C. P. Jarrett, D. M. de Leeuw and M. Matters, Synth. Met. 88, 37-55, 1997.
[21] Christos D. Dimitrakopoulos, Parick R. Malenfant, Adv. Mater., 14, No2, January 16, 2002.
[22] Christos D. Dimitrakopoulos, D. J. Mascaro, IBM J. RES. & DEV. 45(1), 11, 2001.
[23] A. Assadi, C. Svensson, M. Willander, O. Inganas, Appl. Phy. Lett. 53(3), July, 18, 1988.
[24] Sirringhaus, Henning;Tessler, Nir;et al., Science, Vol.280 Issue 5370, 1741, 1998.
[25] Sirringhaus, H. Brown, P. J. Friend, R. H. Nielsen, M. M. Bechgaard, K. Langeveld-Voss, B. M. W. et. al., Synthetic Metals, Vol. 111-112, 129-132, June 1, 2000.
[26] M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, L. Montelius, Microelectronic Engineering, 61-62, 441(2002).
[27] T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, and Y. Ueda, Langmuir 15, 4321(1999)
[28] Jem-Kun Chen, Fu-Hsiang Ko, Kuen-Fong Hsieh, Cheng-Tung Chou, Feng-Chih Chang, J. Vac. Sci. Technol. B 22, 3233(2004).
[29] G. Paasch, T. Lindner, and S. Scheinert, Synth. Met. 132, 97, 2002.
[30] D. R. Hines, S. Mezhenny, M. Breban, E. D. Williams, V. W. Ballarotto, G. Esen, A. Southard, M. S. Fuhrer, APPLIED PHYSICS LETTERS , 86, 163101 (2005).